Friday, January 10, 2025
Google search engine
HomeData Modelling & AICheck if any permutation of array contains sum of every adjacent pair...

Check if any permutation of array contains sum of every adjacent pair not divisible by 3

Given an array arr[] consisting of N integers, the task is to check if any permutation of the array elements exists where the sum of every pair of adjacent elements is not divisible by 3. If it is possible, then print “Yes”. Otherwise, print “No”.

Examples:

Input: arr[] = {1, 2, 3, 3}
Output: Yes
Explanation:
Since there exist at least 1 combination {3, 2, 3, 1} where sum of every adjacent pairs is not divisible by 3.

Input: arr[] = {3, 6, 1, 9}
Output: No

Naive Approach: The simplest approach is to generate all permutations of the given array and check if there exists an arrangement in which the sum of no two adjacent elements is divisible by 3. If it is found to be true, then print “Yes”. Otherwise, print “No”.

Time Complexity: O(N!)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is to observe that the only possible remainders for all the array elements i.e., {0, 1, 2}. To segregate these three numbers in such a way that the sum of two adjacent elements is not divisible by 3. Follow the steps below:

  1. Count all the numbers into three parts having remainder 0, 1, and 2. Let the count be a, b, and c respectively.
  2. Now arrange the numbers having remainder as 0 with the numbers having remainder as 1 or 2 such that their sum will not be divisible by 3. Below are the conditions where this condition can be true: 
    • If a ? 1 and a ? b + c + 1
    • If a and b both are equals to 0 and c > 0
    • If a and c both are equals to 0 and b > 0
  3. If there is no way to arrange all the numbers in the above way then there is no permutation such that their sum of adjacent elements is not divisible by 3. Therefore, print “No”.
  4. If the condition in Step 2 is found to be true, then print “Yes”.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to checks if any permutation
// of the array exists whose sum of
// adjacent pairs is not divisible by 3
void factorsOf3(int arr[], int N)
{
    int a = 0, b = 0, c = 0;
    for (int i = 0; i < N; i++) {
 
        // Count remainder 0
        if (arr[i] % 3 == 0)
            a++;
 
        // Count remainder 1
        else if (arr[i] % 3 == 1)
            b++;
 
        // Count remainder 2
        else if (arr[i] % 3 == 2)
            c++;
    }
 
    // Condition for valid arrangements
    if (a >= 1 && a <= b + c + 1)
        cout << "Yes" << endl;
    else if (a == 0 && b == 0 && c > 0)
        cout << "Yes" << endl;
    else if (a == 0 && c == 0 && b > 0)
        cout << "Yes" << endl;
    else
        cout << "No" << endl;
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 1, 2, 3, 3 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    factorsOf3(arr, N);
 
    return 0;
}


Java




// Java program for
// the above approach
class GFG{
 
// Function to checks if any permutation
// of the array exists whose sum of
// adjacent pairs is not divisible by 3
static void factorsOf3(int arr[], int N)
{
  int a = 0, b = 0, c = 0;
  for (int i = 0; i < N; i++)
  {
    // Count remainder 0
    if (arr[i] % 3 == 0)
      a++;
 
    // Count remainder 1
    else if (arr[i] % 3 == 1)
      b++;
 
    // Count remainder 2
    else if (arr[i] % 3 == 2)
      c++;
  }
 
  // Condition for valid arrangements
  if (a >= 1 && a <= b + c + 1)
    System.out.print("Yes" + "\n");
  else if (a == 0 && b == 0 && c > 0)
    System.out.print("Yes" + "\n");
  else if (a == 0 && c == 0 && b > 0)
    System.out.print("Yes" + "\n");
  else
    System.out.print("No" + "\n");
}
 
// Driver Code
public static void main(String[] args)
{
  // Given array arr[]
  int arr[] = {1, 2, 3, 3};
 
  int N = arr.length;
 
  // Function Call
  factorsOf3(arr, N);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program for the above approach
 
# Function to checks if any permutation
# of the array exists whose sum of
# adjacent pairs is not divisible by 3
def factorsOf3(arr, N):
 
    a = 0
    b = 0
    c = 0
 
    for i in range(N):
 
        # Count remainder 0
        if (arr[i] % 3 == 0):
            a += 1
        # Count remainder 1
        elif (arr[i] % 3 == 1):
            b += 1
        # Count remainder 2
        elif (arr[i] % 3 == 2):
            c += 1
 
    # Condition for valid arrangements
    if (a >= 1 and a <= b + c + 1):
        print("Yes")
    elif (a == 0 and b == 0 and c > 0):
        print("Yes")
    elif (a == 0 and c == 0 and b > 0):
        print("Yes")
    else:
        print("No")
 
# Driver Code
 
# Given array arr[]
arr = [ 1, 2, 3, 3 ]
N = len(arr)
 
# Function call
factorsOf3(arr, N)
 
# This code is contributed by Shivam Singh


C#




// C# program for
// the above approach
using System;
class GFG{
 
// Function to checks if any
// permutation of the array
// exists whose sum of
// adjacent pairs is not
// divisible by 3
static void factorsOf3(int []arr,
                       int N)
{
  int a = 0, b = 0, c = 0;
  for (int i = 0; i < N; i++)
  {
    // Count remainder 0
    if (arr[i] % 3 == 0)
      a++;
 
    // Count remainder 1
    else if (arr[i] % 3 == 1)
      b++;
 
    // Count remainder 2
    else if (arr[i] % 3 == 2)
      c++;
  }
 
  // Condition for valid arrangements
  if (a >= 1 && a <= b + c + 1)
    Console.Write("Yes" + "\n");
  else if (a == 0 && b == 0 && c > 0)
    Console.Write("Yes" + "\n");
  else if (a == 0 && c == 0 && b > 0)
    Console.Write("Yes" + "\n");
  else
    Console.Write("No" + "\n");
}
 
// Driver Code
public static void Main(String[] args)
{
  // Given array []arr
  int []arr = {1, 2, 3, 3};
 
  int N = arr.Length;
 
  // Function Call
  factorsOf3(arr, N);
}
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to checks if any permutation
// of the array exists whose sum of
// adjacent pairs is not divisible by 3
function factorsOf3(arr, N)
{
    let a = 0, b = 0, c = 0;
    for(let i = 0; i < N; i++)
    {
         
        // Count remainder 0
        if (arr[i] % 3 == 0)
            a++;
         
        // Count remainder 1
        else if (arr[i] % 3 == 1)
            b++;
         
        // Count remainder 2
        else if (arr[i] % 3 == 2)
            c++;
    }
     
    // Condition for valid arrangements
    if (a >= 1 && a <= b + c + 1)
        document.write("Yes" + "<br/>");
    else if (a == 0 && b == 0 && c > 0)
        document.write("Yes" + "<br/>");
    else if (a == 0 && c == 0 && b > 0)
        document.write("Yes" + "<br/>");
    else
        document.write("No" + "<br/>");
}
 
// Driver Code
 
// Given array arr[]
let arr = [ 1, 2, 3, 3 ];
 
let N = arr.length;
 
// Function Call
factorsOf3(arr, N);
 
// This code is contributed by chinmoy1997pal 
 
</script>


Output: 

Yes

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments