Thursday, January 9, 2025
Google search engine
HomeData Modelling & AITwo Balls Reachability Game

Two Balls Reachability Game

Given A numbers of white and B numbers of black balls. You need to have X number of white and Y number of black balls (A <= X, B <= Y) to win the game by doing some(zero or more) operations.
In one operation: At any moment if you have p white and q black balls then at that moment you can buy q white or p black balls.
Find if it’s possible to have X white and Y black balls at the end or not. 
Examples: 
 

Input:  A = 1, B = 1, X = 3, Y = 8
Output: POSSIBLE

Explanation:
The steps are, (1, 1)->(1, 2)->(3, 2)->(3, 5)->(3, 8)

Input: A = 3, Y = 2, X = 4, Y = 6
Output: NOT POSSIBLE

 

Approach:
We have to solve this problem using the property of gcd. Let’s see how. 
 

  1. Initially, we have A white and B black ball. We have to get rest of the X-A Red balls and Y-B Black balls. 
     
  2. Below is the property of gcd of two numbers that we will use, 
     
gcd(x, y) = gcd(x + y, y)
gcd(x, y) = gcd(x, y + x)
  1.  
  2. This property is the same as the operation which is mentioned in the question. So from here, we get that if the gcd of the final state is the same as gcd of initial state then it is always possible to reach the goal, otherwise not. 
     

Below is the implementation of the above approach: 
 

C++




// C++ program to Find is it possible
// to have X white and Y black
// balls at the end.
#include <bits/stdc++.h>
using namespace std;
 
// Recursive function to return
// gcd of a and b
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
 
// Function returns if it's 
// possible to have X white
// and Y black balls or not.
void IsPossible(int a, int b,
                int x, int y)
{
 
    // Finding gcd of (x, y)
    // and (a, b)
    int final = gcd(x, y);
    int initial = gcd(a, b);
 
     // If gcd is same, it's always
    // possible to reach (x, y)
    if (initial == final)
    {
        
        cout << "POSSIBLE\n";
    }
    else
    {
        // Here it's never possible
        // if gcd is not same
        cout << "NOT POSSIBLE\n";
    }
}
 
// Driver Code
int main()
{
 
    int A = 1, B = 2, X = 4, Y = 11;
    IsPossible(A, B, X, Y);
 
    A = 2, B = 2, X = 3, Y = 6;
    IsPossible(A, B, X, Y);
 
    return 0;
}


Java




// Java program to Find is it possible
// to have X white and Y black
// balls at the end.
import java.io.*;
 
class GFG{
 
// Recursive function to return
// gcd of a and b
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
 
// Function returns if it's
// possible to have X white
// and Y black balls or not.
static void IsPossible(int a, int b,
                       int x, int y)
{
 
    // Finding gcd of (x, y)
    // and (a, b)
    int g = gcd(x, y);
    int initial = gcd(a, b);
     
    // If gcd is same, it's always
    // possible to reach (x, y)
    if (initial == g)
    {
        System.out.print("POSSIBLE\n");
    }
    else
    {
        // Here it's never possible
        // if gcd is not same
        System.out.print("NOT POSSIBLE\n");
    }
}
 
// Driver code
public static void main(String args[])
{
    int A = 1, B = 2, X = 4, Y = 11;
    IsPossible(A, B, X, Y);
 
    A = 2; B = 2; X = 3; Y = 6;
    IsPossible(A, B, X, Y);
}
}
 
// This code is contributed by shivanisinghss2110


Python3




# Python3 program to find is it possible
# to have X white and Y black
# balls at the end.
 
# Recursive function to return
# gcd of a and b
def gcd(a, b) :
 
    if (b == 0) :
        return a;
    return gcd(b, a % b);
 
 
# Function returns if it's
# possible to have X white
# and Y black balls or not.
def IsPossible(a, b, x, y) :
 
    # Finding gcd of (x, y)
    # and (a, b)
    final = gcd(x, y);
    initial = gcd(a, b);
 
    # If gcd is same, it's always
    # possible to reach (x, y)
    if (initial == final) :
        print("POSSIBLE");
     
    else :
         
        # Here it's never possible
        # if gcd is not same
        print("NOT POSSIBLE");
 
 
# Driver Code
if __name__ == "__main__" :
     
    A = 1; B = 2; X = 4; Y = 11;
    IsPossible(A, B, X, Y);
     
    A = 2; B = 2; X = 3; Y = 6;
    IsPossible(A, B, X, Y);
 
# This code is contributed by AnkitRai01


C#




// C# program to Find is it possible
// to have X white and Y black
// balls at the end.
using System;
using System.Linq;
 
class GFG {
     
// Recursive function to return
// gcd of a and b
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
 
    return gcd(b, a % b);
}
 
// Function returns if it's
// possible to have X white
// and Y black balls or not.
static void IsPossible(int a, int b,
                       int x, int y)
{
     
    // Finding gcd of (x, y)
    // and (a, b)
    int g = gcd(x, y);
    int initial = gcd(a, b);
     
    // If gcd is same, it's always
    // possible to reach (x, y)
    if (initial == g)
    {
        Console.Write("POSSIBLE\n");
    }
    else
    {
         
        // Here it's never possible
        // if gcd is not same
        Console.Write("NOT POSSIBLE\n");
    }
}
 
// Driver code
static public void Main()
{
    int A = 1, B = 2;
    int X = 4, Y = 11;
    IsPossible(A, B, X, Y);
 
    A = 2; B = 2;
    X = 3; Y = 6;
    IsPossible(A, B, X, Y);
}
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
    // Javascript program to Find is it possible
    // to have X white and Y black
    // balls at the end.
     
    // Recursive function to return 
    // gcd of a and b
    function gcd(a, b)
    {
        if (b == 0)
            return a;
        return gcd(b, a % b);
    }
 
    // Function returns if it's  
    // possible to have X white 
    // and Y black balls or not.
    function IsPossible(a, b, x, y)
    {
 
        // Finding gcd of (x, y) 
        // and (a, b)
        let final = gcd(x, y);
        let initial = gcd(a, b);
 
         // If gcd is same, it's always
        // possible to reach (x, y)
        if (initial == final) 
        {
 
            document.write("POSSIBLE" + "</br>");
        }
        else
        {
            // Here it's never possible
            // if gcd is not same
            document.write("NOT POSSIBLE" + "</br>");
        }
    }
     
    let A = 1, B = 2, X = 4, Y = 11;
    IsPossible(A, B, X, Y);
   
    A = 2, B = 2, X = 3, Y = 6;
    IsPossible(A, B, X, Y);
 
// This code is contributed by divyesh072019.
</script>


Output: 

POSSIBLE
NOT POSSIBLE

 

Time Complexity: O(log(max(A, B, X, Y)))

Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments