Given an array arr[] consisting of N integers and an integer K, the task is to maximize the minimum element of the array after decrementing array elements exactly K number of times.
Examples:
Input: arr[] = {2, 4, 4}, K = 3
Output: 2
Explanation:
One of the possible way is:
- Decrement arr[2] by 1. The array modifies to {2, 4, 3}.
- Decrement arr[1] by 1. The array modifies to {2, 3, 3}.
- Decrement arr[2] by 1. The array modifies to {2, 3, 2}.
Therefore, the minimum array element that can be obtained is 2, which it is the maximum possible value.
Input: arr[] = {10, 10, 10, 10, 10}, K = 10
Output: 8
Naive Approach: The simplest approach to solve the given problem is to iterate over the range [1, K] and in each iteration, find the maximum element of the array and then decrement it by 1. After the above steps then print the minimum element of the array.
Time Complexity: O(N * K)
Auxiliary Space: O(1)
Efficient Approach: The above problem can also be optimized based on the following observations:
- It can be observed that the optimal way is to first decrement all the values of the array to the minimum element of the array.
- The total moves needed to make all the elements equal to the min-element is the sum of the array decremented by K times the minimum element of the array.
- If the total number of moves needed to make all the elements equal to the minimum element is less than K then the minimum element will be the answer.
- Otherwise, it will be optimal to decrement from each element of the array by 1 until K becomes 0. Then minimum element will be equal to .
Follow the steps to solve the problem:
- Find the minimum element of the array arr[] and store it in a variable say minElement.
- Initialize a variable, say reqOperation as 0 to store the total number of moves needed to make all the elements equal to the minElement of the array.
- Traverse the array arr[] and in each iteration, increment reqOperation by the current element of the array subtracted by the minElement.
- If reqOperation is greater than K then print minElement. Otherwise, print the value of minElement – (K + N – 1) / N as the resultant minimum element.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the maximized // minimum element of the array // after performing given operation // exactly K times int minimumElement( int arr[], int N, int K) { // Stores the minimum element int minElement = arr[0]; // Traverse the given array for ( int i = 0; i < N; ++i) { // Update the minimum element minElement = min(minElement, arr[i]); } // Stores the required operations // to make all elements equal to // the minimum element int reqOperations = 0; for ( int i = 0; i < N; ++i) { // Update required operations reqOperations += arr[i] - minElement; } // If reqOperations < K if (reqOperations < K) { // Decrement the value of K // by reqOperations K -= reqOperations; // Update minElement minElement -= (K + N - 1) / N; } // Return minimum element return minElement; } // Driver Code int main() { int arr[] = { 10, 10, 10, 10 }; int K = 7; int N = sizeof (arr) / sizeof (arr[0]); cout << minimumElement(arr, N, K); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG { // Function to find the maximized // minimum element of the array // after performing given operation // exactly K times static int minimumElement( int arr[], int N, int K) { // Stores the minimum element int minElement = arr[ 0 ]; // Traverse the given array for ( int i = 0 ; i < N; ++i) { // Update the minimum element minElement = Math.min(minElement, arr[i]); } // Stores the required operations // to make all elements equal to // the minimum element int reqOperations = 0 ; for ( int i = 0 ; i < N; ++i) { // Update required operations reqOperations += arr[i] - minElement; } // If reqOperations < K if (reqOperations < K) { // Decrement the value of K // by reqOperations K -= reqOperations; // Update minElement minElement -= (K + N - 1 ) / N; } // Return minimum element return minElement; } // Driver Code public static void main(String[] args) { int arr[] = { 10 , 10 , 10 , 10 }; int K = 7 ; int N = arr.length; System.out.println(minimumElement(arr, N, K)); } } // This code is contributed by Potta Lokesh |
Python3
# Python program for the above approach # Function to find the maximized # minimum element of the array # after performing given operation # exactly K times def minimumElement(arr, N, K): # Stores the minimum element minElement = arr[ 0 ]; # Traverse the given array for i in range (N): # Update the minimum element minElement = min (minElement, arr[i]); # Stores the required operations # to make all elements equal to # the minimum element reqOperations = 0 ; for i in range (N): # Update required operations reqOperations + = arr[i] - minElement # If reqOperations < K if (reqOperations < K): # Decrement the value of K # by reqOperations K - = reqOperations; # Update minElement minElement - = (K + N - 1 ) / / N; # Return minimum element return minElement; # Driver Code arr = [ 10 , 10 , 10 , 10 ]; K = 7 ; N = len (arr) print (minimumElement(arr, N, K)); # This code is contributed by _saurabh_jaiswal |
C#
// C# program for the above approach using System; class GFG { // Function to find the maximized // minimum element of the array // after performing given operation // exactly K times static int minimumElement( int []arr, int N, int K) { // Stores the minimum element int minElement = arr[0]; // Traverse the given array for ( int i = 0; i < N; ++i) { // Update the minimum element minElement = Math.Min(minElement, arr[i]); } // Stores the required operations // to make all elements equal to // the minimum element int reqOperations = 0; for ( int i = 0; i < N; ++i) { // Update required operations reqOperations += arr[i] - minElement; } // If reqOperations < K if (reqOperations < K) { // Decrement the value of K // by reqOperations K -= reqOperations; // Update minElement minElement -= (K + N - 1) / N; } // Return minimum element return minElement; } // Driver Code public static void Main( string [] args) { int [] arr= { 10, 10, 10, 10 }; int K = 7; int N = arr.Length; Console.Write(minimumElement(arr, N, K)); } } // This code is contributed by ukasp. |
Javascript
<script> // Javascript program for the above approach // Function to find the maximized // minimum element of the array // after performing given operation // exactly K times function minimumElement(arr, N, K) { // Stores the minimum element let minElement = arr[0]; // Traverse the given array for (let i = 0; i < N; ++i) { // Update the minimum element minElement = Math.min(minElement, arr[i]); } // Stores the required operations // to make all elements equal to // the minimum element let reqOperations = 0; for (let i = 0; i < N; ++i) { // Update required operations reqOperations += arr[i] - minElement; } // If reqOperations < K if (reqOperations < K) { // Decrement the value of K // by reqOperations K -= reqOperations; // Update minElement minElement -= Math.floor((K + N - 1) / N); } // Return minimum element return minElement; } // Driver Code let arr = [ 10, 10, 10, 10 ]; let K = 7; let N = arr.length; document.write(minimumElement(arr, N, K)); // This code is contributed by _saurabh_jaiswal </script> |
8
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!