Tuesday, October 8, 2024
Google search engine
HomeData Modelling & AICount of Binary Strings possible as per given conditions

Count of Binary Strings possible as per given conditions

Given two integers N and M, where N denotes the count of ‘0’ and M denotes the count of ‘1’, and an integer K, the task is to find the maximum number of binary strings that can be generated of the following two types: 

  • A string can consist of K0‘s and a single ‘1‘.
  • A string can consist of K1‘s and a single ‘0‘.

Examples: 

Input: N = 4, M = 4, K = 2 
Output:
Explanation: 
Count of ‘0‘s = 4 
Count of ‘1‘s = 4 
Possible ways to combine 0’s and 1’s under given constraints are {“001”, “001”} or {“001”, “110”} or {“110”, “110”} 
Therefore, at most 2 combinations exists in a selection. 
Each combination can be arranged in K + 1 ways, i.e. “001” can be rearranged to form “010, “100” as well. 
Therefore, the maximum possible strings that can be generated is 3 * 2 = 6

Input: N = 101, M = 231, K = 15 
Output: 320 

Approach: 
Follow the steps below to solve the problem: 

  • Consider the following three conditions to generate maximum possible combinations of binary strings: 
    • Number of combinations cannot exceed N.
    • Number of combinations cannot exceed M.
    • Number of combinations cannot exceed (A+B)/(K + 1).
  • Therefore, the maximum possible combinations are min(A, B, (A + B)/ (K + 1)).
  • Therefore, the maximum possible strings that can be generated are (K + 1) * min(A, B, (A + B)/ (K + 1)).

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate maximum
// possible strings that can be generated
long long countStrings(long long A,
                    long long B,
                    long long K)
{
 
    long long X = (A + B) / (K + 1);
 
    // Maximum possible strings
    return (min(A, min(B, X)) * (K + 1));
}
int main()
{
 
    long long N = 101, M = 231, K = 15;
    cout << countStrings(N, M, K);
    return 0;
}


Java




// Java program to implement
// the above approach
import java.io.*;
import java.util.*;
 
class GFG{
 
// Function to generate maximum
// possible strings that can be generated
static long countStrings(long A, long B,
                        long K)
{
    long X = (A + B) / (K + 1);
 
    // Maximum possible strings
    return (Math.min(A, Math.min(B, X)) *
                                (K + 1));
}
 
// Driver Code
public static void main (String[] args)
{
    long N = 101, M = 231, K = 15;
     
    System.out.print(countStrings(N, M, K));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program to implement 
# the above approach 
  
# Function to generate maximum 
# possible strings that can be
# generated 
def countStrings(A, B, K): 
   
    X = (A + B) // (K + 1
   
    # Maximum possible strings 
    return (min(A, min(B, X)) * (K + 1)) 
 
# Driver code
N, M, K = 101, 231, 15
 
print(countStrings(N, M, K))
 
# This code is contributed divyeshrabadiya07


C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function to generate maximum
// possible strings that can be generated
static long countStrings(long A, long B,
                        long K)
{
    long X = (A + B) / (K + 1);
 
    // Maximum possible strings
    return (Math.Min(A, Math.Min(B, X)) *
                                (K + 1));
}
 
// Driver Code
public static void Main (string[] args)
{
    long N = 101, M = 231, K = 15;
     
    Console.Write(countStrings(N, M, K));
}
}
 
// This code is contributed by rock_cool


Javascript




<script>
// JavaScript Program to implement
// the above approach
 
// Function to generate maximum
// possible strings that can be generated
function countStrings(A, B, K)
{
 
    let X = Math.floor((A + B) / (K + 1));
 
    // Maximum possible strings
    return (Math.min(A, Math.min(B, X)) * (K + 1));
}
 
 
    let N = 101, M = 231, K = 15;
    document.write(countStrings(N, M, K));
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output:

320

Time Complexity: O(1)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments