Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIGenerate a String of having N*N distinct non-palindromic Substrings

Generate a String of having N*N distinct non-palindromic Substrings

Given an even integer N, the task is to construct a string such that the total number of distinct substrings of that string that are not a palindrome equals N2.

Examples:  

Input: N = 2 
Output: aabb 
Explanation: 
All the distinct non-palindromic substrings are ab, abb, aab and aabb
Therefore, the count of non-palindromic substrings is 4 = 2 2 
Input: N = 4 
Output: cccczzzz 
Explanation: 
All distinct non-palindromic substrings of the string are cz, czz, czzz, czzzz, ccz, cczz, cczzz, cczzzz, cccz, ccczz, ccczzz, ccczzzz, ccccz, cccczz, cccczzz, cccczzzz
The count of non-palindromic substrings is 16. 

Approach:
It can be observed that, if the first N characters of a string are the same, followed by N identical characters different from the first N characters, then the count of distinct non-palindromic substrings will be N2.  

Proof:

N = 3 
str = “aaabbb” 
The string can be split into two substrings of N characters each: “aaa” and “bbb” 
The first character ‘a’ from the first substring forms N distinct non-palindromic substrings “ab”, “abb”, “abbb” with the second substring. 
Similarly, first two characters “aa” forms N distinct non-palindromic substrings “aab”, “aabb”, “aabbb”. 
Similarly, remaining N – 2 characters of the first substring each form N distinct non-palindromic substrings as well. 
Therefore, the total number of distinct non-palindromic substrings is equal to N2

Therefore, to solve the problem, print ‘a’ as the first N characters of the string and ‘b’ as the next N characters of the string.
 

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to construct a string
// having N*N non-palindromic substrings
void createString(int N)
{
    for (int i = 0; i < N; i++) {
        cout << 'a';
    }
    for (int i = 0; i < N; i++) {
        cout << 'b';
    }
}
 
// Driver Code
int main()
{
    int N = 4;
 
    createString(N);
    return 0;
}


Java




// Java Program to implement
// the above approach
class GFG{
 
// Function to construct a string
// having N*N non-palindromic substrings
static void createString(int N)
{
    for (int i = 0; i < N; i++)
    {
        System.out.print('a');
    }
    for (int i = 0; i < N; i++)
    {
        System.out.print('b');
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 4;
 
    createString(N);
}
}
 
// This code is contributed by shivanisinghss2110


Python3




# Python3 program to implement
# the above approach
 
# Function to construct a string
# having N*N non-palindromic substrings
def createString(N):
 
    for i in range(N):
        print('a', end = '')
    for i in range(N):
        print('b', end = '')
 
# Driver Code
N = 4
 
createString(N)
 
# This code is contributed by Shivam Singh


C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function to construct a string
// having N*N non-palindromic substrings
static void createString(int N)
{
    for(int i = 0; i < N; i++)
    {
        Console.Write('a');
    }
    for(int i = 0; i < N; i++)
    {
        Console.Write('b');
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 4;
 
    createString(N);
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
// JavaScript program for the above approach
 
// Function to construct a string
// having N*N non-palindromic substrings
function createString(N)
{
    for (let i = 0; i < N; i++)
    {
        document.write('a');
    }
    for (let i = 0; i < N; i++)
    {
        document.write('b');
    }
}
     
// Driver Code
 
        let N = 4;
   
    createString(N);
         
</script>


Output: 

aaaabbbb

 

Time Complexity: O(N)
Auxiliary Space: O(1)
 

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments