Thursday, January 9, 2025
Google search engine
HomeData Modelling & AISum and Product of all Composite numbers which are divisible by k...

Sum and Product of all Composite numbers which are divisible by k in an array

Given an array arr[] of N positive integers. The task is to find the sum of all composite elements which are divisible by a given number k in the given array.

Examples: 

Input: arr[] = {1, 3, 4, 5, 7}, k = 2
Output: 4, 4
There is one composite number i.e. 4.
So, sum = 4 and product = 4

Input: arr[] = {1, 2, 3, 4, 5, 6, 7}, k = 2
Output: 10, 24
There is only two composite numbers i.e. 4 and 6.
So, sum = 10 and product = 24

Naive Approach: A simple solution is to traverse the array and keep checking for every element if it is composite or not and also divisible by k then add and product the composite element at the same time.

Efficient Approach: Generate all primes up to the maximum element of the array using the sieve of Eratosthenes and store them in a hash. Now traverse the array and find the sum and product of those elements which are composite and divisible by k using the sieve.

Below is the implementation of the efficient approach: 

C++




// CPP program to find sum and product of
// composites which are divisible by k in given array.
#include <bits/stdc++.h>
using namespace std;
 
// Function to find count of composite
void compositeSumProduct(int arr[], int n, int k)
{
    // Find maximum value in the array
    int max_val = *max_element(arr, arr + n);
 
    // Use sieve to find all prime numbers less than
    // or equal to max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    vector<bool> prime(max_val + 1, true);
 
    // Remaining part of SIEVE
    prime[0] = true;
    prime[1] = true;
    for (int p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
 
    // Sum all primes in arr[]
    int sum = 0, product = 1;
    for (int i = 0; i < n; i++)
        if (!prime[arr[i]] && arr[i] % k == 0) {
            sum += arr[i];
            product *= arr[i];
        }
 
    cout << "Sum of composite numbers divisible by k is "
         << sum;
    cout << "\nProduct of composite numbers divisible by k is "
         << product;
}
 
// Driver code
int main()
{
 
    int arr[] = { 1, 2, 3, 4, 5, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 2;
    compositeSumProduct(arr, n, k);
 
    return 0;
}


Java




// Java program to find sum and product of
// composites which are divisible by k in given array.
import java.util.Vector;
 
public class GFG {
 
    static int max_val(int[] arr) {
        int i;
 
        // Initialize maximum element
        int max = arr[0];
 
        // Traverse array elements from second and
        // compare every element with current max  
        for (i = 1; i < arr.length; i++) {
            if (arr[i] > max) {
                max = arr[i];
            }
        }
 
        return max;
    }
 
// Function to find count of composite
    static void compositeSumProduct(int arr[], int n, int k) {
        // Find maximum value in the array
        int max_val = max_val(arr);
 
        // Use sieve to find all prime numbers less than
        // or equal to max_val
        // Create a boolean array "prime[0..n]". A
        // value in prime[i] will finally be false
        // if i is Not a prime, else true.
        Vector<Boolean> prime = new Vector<>();
        // Remaining part of SIEVE
        for(int i = 0;i<max_val+1;i++){
            prime.add(i, Boolean.TRUE);
        }
        for (int p = 2; p * p <= max_val; p++) {
 
            // If prime[p] is not changed, then
            // it is a prime
            if (prime.get(p) == true) {
 
                // Update all multiples of p
                for (int i = p * 2; i <= max_val; i += p) {
                    prime.add(i, Boolean.FALSE);
                }
            }
        }
 
        // Sum all primes in arr[]
        int sum = 0, product = 1;
        for (int i = 0; i < n; i++) {
            //if (!prime[arr[i]] && arr[i] % k == 0)
            if (!prime.get(arr[i]) && arr[i] % k == 0) {
                sum += arr[i];
                product *= arr[i];
            }
        }
        System.out.println("Sum of composite numbers "
                + "divisible by k is " + sum);
        System.out.println("\nProduct of composite numbers"
                + " divisible by k is " + product);
 
    }
 
// Driver code
    public static void main(String[] args) {
        int arr[] = {1, 2, 3, 4, 5, 6, 7};
        int n = arr.length;
        int k = 2;
        compositeSumProduct(arr, n, k);
    }
 
}


Python3




# Python 3 program to find sum and product
# of composites which are divisible by k
# in given array.
from math import sqrt, ceil
 
# Function to find count of composite
def compositeSumProduct(arr, n, k):
     
    # Find maximum value in the array
    max_val = arr[0];
    for i in range(len(arr)):
        if(max_val < arr[i]):
            max_val = arr[i]
         
    # Use sieve to find all prime numbers
    # less than or equal to max_val
    # Create a boolean array "prime[0..n]".
    # A value in prime[i] will finally be
    # false if i is Not a prime, else true.
    prime = [True for i in range(max_val + 1)]
 
    # Remaining part of SIEVE
    k = int(sqrt(max_val))
    for p in range(2, k + 1, 1):
         
        # If prime[p] is not changed,
        # then it is a prime
        if (prime[p] == True):
             
            # Update all multiples of p
            for i in range(p * 2, max_val, p):
                prime[i] = False
 
    # Sum all primes in arr[]
    sum = 0
    product = 1
    for i in range(0, n, 1):
        if (prime[arr[i]] == False and
                  arr[i] % k == 0):
            sum += arr[i]
            product *= arr[i]
 
    print("Sum of composite numbers",
          "divisible by k is", sum)
    print("Product of composite numbers",
          "divisible by k is", product)
 
# Driver code
if __name__ == '__main__':
    arr = [1, 2, 3, 4, 5, 6, 7]
    n = len(arr)
    k = 2
    compositeSumProduct(arr, n, k)
 
# This code is contributed by
# Surendra_Gangwar


C#




// C# program to find sum and product of
// composites which are divisible by k in given array.
using System;
using System.Collections.Generic;
public class GFG {
 
    static int max_val_func(int []arr) {
        int i;
 
        // Initialize maximum element
        int max = arr[0];
 
        // Traverse array elements from second and
        // compare every element with current max
        for (i = 1; i < arr.Length; i++) {
            if (arr[i] > max) {
                max = arr[i];
            }
        }
 
        return max;
    }
 
// Function to find count of composite
    static void compositeSumProduct(int []arr, int n, int k) {
        // Find maximum value in the array
        int max_val = max_val_func(arr);
 
        // Use sieve to find all prime numbers less than
        // or equal to max_val
        // Create a boolean array "prime[0..n]". A
        // value in prime[i] will finally be false
        // if i is Not a prime, else true.
        List<int> prime = new List<int>();
        // Remaining part of SIEVE
        for(int i = 0;i<max_val+1;i++){
            prime.Insert(i, 1);
        }
        for (int p = 2; p * p <= max_val; p++) {
 
            // If prime[p] is not changed, then
            // it is a prime
            if (prime[p] == 1) {
 
                // Update all multiples of p
                for (int i = p * 2; i <= max_val; i += p) {
                    prime.Insert(i, 0);
                }
            }
        }
 
        // Sum all primes in arr[]
        int sum = 0, product = 1;
        for (int i = 0; i < n; i++) {
            //if (!prime[arr[i]] && arr[i] % k == 0)
            if (prime[arr[i]]==0 && arr[i] % k == 0) {
                sum += arr[i];
                product *= arr[i];
            }
        }
        Console.WriteLine("Sum of composite numbers "
                + "divisible by k is " + sum);
        Console.WriteLine("\nProduct of composite numbers"
                + " divisible by k is " + product);
 
    }
 
// Driver code
    static public void Main(String []args) {
        int []arr = {1, 2, 3, 4, 5, 6, 7};
        int n = arr.Length;
        int k = 2;
        compositeSumProduct(arr, n, k);
    }
 
}
//contributed by Arnab Kundu


Javascript




<script>
// Javascript program to find sum and product of
// composites which are divisible by k in given array.
 
 
// Function to find count of composite
function compositeSumProduct(arr, n, k)
{
 
    // Find maximum value in the array
    let max_val = arr.sort((a, b) => b - a)[0];
 
    // Use sieve to find all prime numbers less than
    // or equal to max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    let prime = new Array(max_val + 1).fill(true);
 
    // Remaining part of SIEVE
    prime[0] = true;
    prime[1] = true;
    for (let p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (let i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
 
    // Sum all primes in arr[]
    let sum = 0, product = 1;
    for (let i = 0; i < n; i++)
        if (!prime[arr[i]] && arr[i] % k == 0) {
            sum += arr[i];
            product *= arr[i];
        }
 
    document.write("Sum of composite numbers divisible by k is " + sum);
    document.write("<br>Product of composite numbers divisible by k is " + product);
}
 
// Driver code
let arr = [1, 2, 3, 4, 5, 6, 7];
let n = arr.length
let k = 2;
compositeSumProduct(arr, n, k);
 
// This code is contributed by gfgking
</script>


Output

Sum of composite numbers divisible by k is 10
Product of composite numbers divisible by k is 24

Complexity Analysis:

  • Time complexity: O(n), as we are looping over n times. Where n is the maximum value of an element in an array, not size.
  • Auxiliary Space: O(MaxElement), as we are using a prime array of size MaxElement.
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments