Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount of decrement operations required to obtain K in N steps

Count of decrement operations required to obtain K in N steps

Given two integers N and K, denoting the number of operations allowed and the number that needs to be obtained after performing N operations respectively. Consider a value S, initially 0, the task is to convert S to K by performing the following operations N times in any manner:

  1. Subtract 1 from S.
  2. Add P + 1 to S, where P is the number added previously(initially 0).

If it is not possible to convert S to K, print -1. Otherwise, print the number of decrement operations are required to be performed.
Note: S must be positive after every operation performed.

Examples:

Input: N = 5, K = 4
Output: 2
Explanation: 
The order of the N operations performed: 
Step 1: Adding 1 to S converts S = 1 
Step 2: Adding 2 to S converts S = 3 
Step 3: Subtracting 1 from S converts S = 2 
Step 4: Adding 3 to S converts S = 5 
Step 5: Subtracting 1 from S converts S = 4. 
Since S is equal to K after N(= 5) operations, the answer is 2 as 2 decrement operations are performed.

Input: N = 10, K = 3
Output: -1

Naive Approach: The simplest idea is to iterate a loop over the range [1, N] and check for the following conditions:

\frac{i*(i+1)}{2} - K = X
 

and i + K = N

If there exists any value of i from the range [1, N] satisfying the above conditions, then print the value of i. Otherwise, print “-1”
Time Complexity: O(N), where N is the maximum number of steps allowed.
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is to use Binary Search. Below are the steps:

  1. Initialize two variables start as 0 and end as N.
  2. Find the middle index of the above two variables by taking the average of start and end.
  3. Check if we can have a mid number of steps of Type 1. If yes, then print mid and stop the iteration.
  4. Else update start or end according to the results we get by checking mid and repeat from step 2.
  5. If there doesn’t exist any mid satisfying the given condition then print “-1”.

Below is the implementation for the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check whether m number
// of steps of type 1 are valid or not
int isValid(int n, int m, int k)
{
 
    // If m and n are the count of operations
    // of type 1 and type 2 respectively,
    // then n - m operations are performed
    int step2 = n - m;
 
    // Find the value of S after step 2
    int cnt = (step2 * (step2 + 1)) / 2;
 
    // If m steps of type 1 is valid
    if (cnt - m == k)
        return 0;
 
    if (cnt - m > k)
        return 1;
 
    return -1;
}
 
// Function to find the number of
// operations of type 1 required
void countOfOperations(int n, int k)
{
    int start = 0, end = n;
    bool ok = 1;
 
    // Iterate over the range
    while (start <= end) {
 
        // Find the value of mid
        int mid = (start + end) / 2;
 
        // Check if m steps of type 1
        // are valid or not
        int temp = isValid(n, mid, k);
 
        // If mid is the valid
        // number of steps
        if (temp == 0) {
            ok = 0;
            cout << mid;
            break;
        }
 
        else if (temp == 1) {
            start = mid + 1;
        }
 
        else {
            end = mid - 1;
        }
    }
 
    // If no valid number
    // of steps exist
    if (ok)
        cout << "-1";
}
 
// Driver Code
int main()
{
    // Given and N, K
    int N = 5, K = 4;
 
    // Function Call
    countOfOperations(N, K);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to check whether m number
// of steps of type 1 are valid or not
static int isValid(int n, int m, int k)
{
 
    // If m and n are the count of operations
    // of type 1 and type 2 respectively,
    // then n - m operations are performed
    int step2 = n - m;
 
    // Find the value of S after step 2
    int cnt = (step2 * (step2 + 1)) / 2;
 
    // If m steps of type 1 is valid
    if (cnt - m == k)
    return 0;
 
    if (cnt - m > k)
        return 1;
 
    return -1;
}
 
// Function to find the number of
// operations of type 1 required
static void countOfOperations(int n, int k)
{
    int start = 0, end = n;
    boolean ok = true;
 
    // Iterate over the range
    while (start <= end)
    {
         
        // Find the value of mid
        int mid = (start + end) / 2;
 
        // Check if m steps of type 1
        // are valid or not
        int temp = isValid(n, mid, k);
 
        // If mid is the valid
        // number of steps
        if (temp == 0)
        {
            ok = false;
            System.out.print(mid);
            break;
        }
 
        else if (temp == 1)
        {
            start = mid + 1;
        }
        else
        {
            end = mid - 1;
        }
    }
 
    // If no valid number
    // of steps exist
    if (ok)
        System.out.print("-1");
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given and N, K
    int N = 5, K = 4;
 
    // Function call
    countOfOperations(N, K);
}
}
 
// This code is contributed by gauravrajput1


Python3




# Python3 program for the above approach
 
# Function to check whether m number
# of steps of type 1 are valid or not
def isValid(n, m, k):
 
    # If m and n are the count of operations
    # of type 1 and type 2 respectively,
    # then n - m operations are performed
    step2 = n - m
 
    # Find the value of S after step 2
    cnt = (step2 * (step2 + 1)) // 2
 
    # If m steps of type 1 is valid
    if (cnt - m == k):
        return 0
 
    if (cnt - m > k):
        return 1
 
    return -1
 
# Function to find the number of
# operations of type 1 required
def countOfOperations(n, k):
 
    start = 0
    end = n
    ok = 1
 
    # Iterate over the range
    while(start <= end):
 
        # Find the value of mid
        mid = (start + end) // 2
 
        # Check if m steps of type 1
        # are valid or not
        temp = isValid(n, mid, k)
 
        # If mid is the valid
        # number of steps
        if (temp == 0):
            ok = 0
            print(mid)
            break
 
        elif (temp == 1):
            start = mid + 1
        else:
            end = mid - 1
 
    # If no valid number
    # of steps exist
    if (ok):
        print("-1")
 
# Driver Code
 
# Given and N, K
N = 5
K = 4
 
# Function call
countOfOperations(N, K)
 
# This code is contributed by Shivam Singh


C#




// C# program for
// the above approach
using System;
class GFG{
 
// Function to check
// whether m number of steps
// of type 1 are valid or not
static int isValid(int n,
                   int m, int k)
{
  // If m and n are the
  // count of operations
  // of type 1 and type 2
  // respectively, then n - m
  // operations are performed
  int step2 = n - m;
 
  // Find the value of S
  // after step 2
  int cnt = (step2 *
            (step2 + 1)) / 2;
 
  // If m steps of
  // type 1 is valid
  if (cnt - m == k)
    return 0;
 
  if (cnt - m > k)
    return 1;
 
  return -1;
}
 
// Function to find the
// number of operations
// of type 1 required 
static void countOfOperations(int n,
                              int k)
{
  int start = 0, end = n;
  bool ok = true;
 
  // Iterate over the range
  while (start <= end)
  {
    // Find the value of mid
    int mid = (start + end) / 2;
 
    // Check if m steps of type 1
    // are valid or not
    int temp = isValid(n, mid, k);
 
    // If mid is the valid
    // number of steps
    if (temp == 0)
    {
      ok = false;
      Console.Write(mid);
      break;
    }
 
    else if (temp == 1)
    {
      start = mid + 1;
    }
    else
    {
      end = mid - 1;
    }
  }
 
  // If no valid number
  // of steps exist
  if (ok)
    Console.Write("-1");
}
 
// Driver Code
public static void Main(String[] args)
{
  // Given and N, K
  int N = 5, K = 4;
 
  // Function call
  countOfOperations(N, K);
}
}
 
// This code is contributed by Amit Katiyar


Javascript




<script>
// Javascript program for the above approach
 
// Function to check whether m number
// of steps of type 1 are valid or not
function isValid(n, m, k)
{
 
    // If m and n are the count of operations
    // of type 1 and type 2 respectively,
    // then n - m operations are performed
    var step2 = n - m;
 
    // Find the value of S after step 2
    var cnt = parseInt((step2 * (step2 + 1)) / 2);
 
    // If m steps of type 1 is valid
    if (cnt - m == k)
        return 0;
 
    if (cnt - m > k)
        return 1;
 
    return -1;
}
 
// Function to find the number of
// operations of type 1 required
function countOfOperations(n, k)
{
    var start = 0, end = n;
    var ok = 1;
 
    // Iterate over the range
    while (start <= end) {
 
        // Find the value of mid
        var mid = parseInt((start + end) / 2);
 
        // Check if m steps of type 1
        // are valid or not
        var temp = isValid(n, mid, k);
 
        // If mid is the valid
        // number of steps
        if (temp == 0) {
            ok = 0;
            document.write( mid);
            break;
        }
 
        else if (temp == 1) {
            start = mid + 1;
        }
 
        else {
            end = mid - 1;
        }
    }
 
    // If no valid number
    // of steps exist
    if (ok)
        document.write( "-1");
}
 
// Driver Code
// Given and N, K
var N = 5, K = 4;
// Function Call
countOfOperations(N, K);
 
</script>


Output: 

2

Time Complexity: O(log2N), where N is the given steps
Space Complexity: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments