Saturday, November 16, 2024
Google search engine
HomeData Modelling & AIModify sequence of first N natural numbers to a given array by...

Modify sequence of first N natural numbers to a given array by replacing pairs with their GCD

Given an integer N and an array arr[], the task is to check if a sequence of first N natural numbers, i.e. {1, 2, 3, .. N} can be made equal to arr[] by choosing any pair (i, j) from the sequence and replacing both i and j by GCD of i and j. If possible, then print “Yes”. Otherwise, print “No”.

Examples:

Input: N = 4, arr[] = {1, 2, 3, 2}
Output: Yes
Explanation: For the pair (2, 4) in the sequence {1, 2, 3, 4}, GCD(2, 4) = 2. Now, the sequence modifies to {1, 2, 3, 2}, which is same as arr[].

Input: N = 3, arr[] = {1, 2, 2}
Output: No

Approach:

We can start by iterating over all pairs of numbers (i, j) such that 1 ? i < j ? N and finding their GCD using the Euclidean algorithm. Then, if we find a pair (i, j) such that GCD(i, j) is equal to arr[i-1] and arr[j-1], we can replace both i and j with GCD(i, j) and continue with the modified sequence. If we are able to modify the sequence to be equal to arr[], then we can print “Yes”. Otherwise, we can print “No”.

Algorithm:

  • Initialize a sequence of first N natural numbers, i.e. {1, 2, 3, .. N}.
  • Iterate over all pairs of numbers (i, j) such that 1 ? i < j ? N.
  • Compute the GCD of i and j using the Euclidean algorithm.
  • If GCD(i, j) is equal to arr[i-1] and arr[j-1], replace both i and j with GCD(i, j) in the sequence.
  • If the modified sequence is equal to arr[], print “Yes” and return.
  • If no such pair (i, j) is found, print “No” and return.

Implementation of the above approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to compute the GCD using the Euclidean algorithm
int gcd(int a, int b) {
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
 
// Function to check if a sequence of first N natural numbers can be made equal to arr[]
void checkSequence(int N, int arr[]) {
    // Initialize the sequence of first N natural numbers
    vector<int> seq(N);
    for (int i = 0; i < N; i++)
        seq[i] = i+1;
 
    // Iterate over all pairs of numbers (i, j) such that 1 ? i < j ? N
    for (int i = 0; i < N; i++) {
        for (int j = i+1; j < N; j++) {
            // Compute the GCD of i and j
            int g = gcd(seq[i], seq[j]);
            // If GCD(i, j) is equal to arr[i-1] and arr[j-1], replace both i and j with GCD(i, j) in the sequence
            if (g == arr[i] && g == arr[j]) {
                seq[i] = seq[j] = g;
                break;
            }
        }
        // If the modified sequence is equal to arr[], print "Yes" and return
        if (seq == vector<int>(arr, arr+N)) {
            cout << "Yes\n";
            return;
        }
    }
    // If no such pair (i, j) is found, print "No" and return
    cout << "No\n";
}
 
// Driver code
int main() {
    int N = 4;
    int arr[] = {1, 2, 3, 2};
    checkSequence(N, arr);
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
    // Function to compute the GCD using the Euclidean
    // algorithm
    public static int gcd(int a, int b)
    {
        if (a == 0)
            return b;
        return gcd(b % a, a);
    }
 
    // Function to check if a sequence of first N natural
    // numbers can be made equal to arr[]
    public static void checkSequence(int N, int[] arr)
    {
        // Initialize the sequence of first N natural
        // numbers
        List<Integer> seq = new ArrayList<>();
        for (int i = 0; i < N; i++)
            seq.add(i + 1);
 
        // Iterate over all pairs of numbers (i, j) such
        // that 1 ? i < j ? N
        for (int i = 0; i < N; i++) {
            for (int j = i + 1; j < N; j++) {
                // Compute the GCD of i and j
                int g = gcd(seq.get(i), seq.get(j));
                // If GCD(i, j) is equal to arr[i-1] and
                // arr[j-1], replace both i and j with
                // GCD(i, j) in the sequence
                if (g == arr[i] && g == arr[j]) {
                    seq.set(i, g);
                    seq.set(j, g);
                    break;
                }
            }
            // If the modified sequence is equal to arr[],
            // print "Yes" and return
            if (seq.equals(Arrays.asList(
                    Arrays.stream(arr).boxed().toArray(
                        Integer[] ::new)))) {
                System.out.println("Yes");
                return;
            }
        }
        // If no such pair (i, j) is found, print "No" and
        // return
        System.out.println("No");
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int N = 4;
        int[] arr = { 1, 2, 3, 2 };
        checkSequence(N, arr);
    }
}
// Contributed by sdeadityasharma


Python3




from typing import List
import math
 
# Function to compute the GCD using the Euclidean algorithm
def gcd(a: int, b: int) -> int:
    if a == 0:
        return b
    return gcd(b % a, a)
 
# Function to check if a sequence of first N natural
# numbers can be made equal to arr[]
def checkSequence(N: int, arr: List[int]):
    # Initialize the sequence of first N natural numbers
    seq = list(range(1, N+1))
 
    # Iterate over all pairs of numbers (i, j) such that 1 ? i < j ? N
    for i in range(N):
        for j in range(i+1, N):
            # Compute the GCD of i and j
            g = gcd(seq[i], seq[j])
            # If GCD(i, j) is equal to arr[i-1] and arr[j-1], replace both i and j with
            # GCD(i, j) in the sequence
            if g == arr[i] and g == arr[j]:
                seq[i] = g
                seq[j] = g
                break
        # If the modified sequence is equal to arr[], print "Yes" and return
        if seq == list(range(1, N+1)):
            print("Yes")
            return
    # If no such pair (i, j) is found, print "No" and return
    print("No")
 
# Driver code
if __name__ == '__main__':
    N = 4
    arr = [1, 2, 3, 2]
    checkSequence(N, arr)


C#




// C# Program for the above approach
 
using System;
using System.Collections.Generic;
using System.Linq;
 
class MainClass {
    // Function to compute the GCD using the Euclidean
    // algorithm
    public static int gcd(int a, int b)
    {
        if (a == 0)
            return b;
        return gcd(b % a, a);
    }
 
    // Function to check if a sequence of first N natural
    // numbers can be made equal to arr[]
    public static void checkSequence(int N, int[] arr)
    {
        // Initialize the sequence of first N natural
        // numbers
        List<int> seq = new List<int>();
        for (int i = 0; i < N; i++)
            seq.Add(i + 1);
 
        // Iterate over all pairs of numbers (i, j) such
        // that 1 ? i < j ? N
        for (int i = 0; i < N; i++) {
            for (int j = i + 1; j < N; j++) {
                // Compute the GCD of i and j
                int g = gcd(seq[i], seq[j]);
                // If GCD(i, j) is equal to arr[i-1] and
                // arr[j-1], replace both i and j with
                // GCD(i, j) in the sequence
                if (g == arr[i] && g == arr[j]) {
                    seq[i] = g;
                    seq[j] = g;
                    break;
                }
            }
            // If the modified sequence is equal to arr[],
            // print "Yes" and return
            if (seq.SequenceEqual(arr)) {
                Console.WriteLine("Yes");
                return;
            }
        }
        // If no such pair (i, j) is found, print "No" and
        // return
        Console.WriteLine("No");
    }
 
    // Driver code
    public static void Main(string[] args)
    {
        int N = 4;
        int[] arr = { 1, 2, 3, 2 };
        checkSequence(N, arr);
    }
}
 
// This code is contributed by Prince Kumar


Javascript




// Function to compute the GCD using the Euclidean algorithm
function gcd(a, b) {
    if (a === 0) {
        return b;
    }
    return gcd(b % a, a);
}
 
// Function to check if a sequence of first N natural
// numbers can be made equal to arr[]
function checkSequence(N, arr) {
    // Initialize the sequence of first N natural numbers
    const seq = Array.from({ length: N }, (_, i) => i + 1);
 
    // Iterate over all pairs of numbers (i, j) such that 1 ? i < j ? N
    for (let i = 0; i < N; i++) {
        for (let j = i + 1; j < N; j++) {
            // Compute the GCD of i and j
            const g = gcd(seq[i], seq[j]);
            // If GCD(i, j) is equal to arr[i-1] and arr[j-1], replace both i and j with
            // GCD(i, j) in the sequence
            if (g === arr[i] && g === arr[j]) {
                seq[i] = g;
                seq[j] = g;
                break;
            }
        }
        // If the modified sequence is equal to arr[], print "Yes" and return
        if (seq.every((value, index) => value === index + 1)) {
            console.log("Yes");
            return;
        }
    }
    // If no such pair (i, j) is found, print "No" and return
    console.log("No");
}
 
// Driver code
const N = 4;
const arr = [1, 2, 3, 2];
checkSequence(N, arr);


Output

Yes

Time Complexity: O(N * sqrt(N) * log(N))

Space Complexity: O(N)

Approach: The idea is based on the fact that the GCD of two numbers lies between 1 and the minimum of the two numbers. By definition of gcd, it’s the greatest number that divides both. Therefore, make the number at an index smaller if and only if there exists some number which is its factor. Hence, it can be concluded that for every ith index in the array, if the follow condition holds true, the array arr[] can be obtained from the sequence of first N natural numbers.

(i + 1) % arr[i] == 0

Follow the steps below to solve the problem: 

  • Traverse the array arr[] using variable i.
  • For every ith index, check if (i + 1) % arr[i] is equal to 0 or not. If found to be false for any array element, print “No”.
  • Otherwise, after complete traversal of the array, print “Yes”.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if array arr[]
// can be obtained from first N
// natural numbers or not
void isSequenceValid(vector<int>& B,
                     int N)
{
    for (int i = 0; i < N; i++) {
 
        if ((i + 1) % B[i] != 0) {
            cout << "No";
            return;
        }
    }
 
    cout << "Yes";
}
 
// Driver Code
int main()
{
    int N = 4;
    vector<int> arr{ 1, 2, 3, 2 };
 
    // Function Call
    isSequenceValid(arr, N);
 
    return 0;
}


Java




// Java program for the above approach
class GFG{
      
// Function to check if array arr[]
// can be obtained from first N
// natural numbers or not
static void isSequenceValid(int[] B,
                            int N)
{
    for(int i = 0; i < N; i++)
    {
        if ((i + 1) % B[i] != 0)
        {
            System.out.print("No");
            return;
        }
    }
    System.out.print("Yes");
}
  
// Driver code
public static void main(String[] args)
{
    int N = 4;
    int[] arr = { 1, 2, 3, 2 };
     
    // Function Call
    isSequenceValid(arr, N);
}
}
  
// This code is contributed by sanjoy_62


Python3




# Python3 program for the above approach
 
# Function to check if array arr[]
# can be obtained from first N
# natural numbers or not
def isSequenceValid(B, N):
     
    for i in range(N):
        if ((i + 1) % B[i] != 0):
            print("No")
            return
         
    print("Yes")
     
# Driver Code
N = 4
arr = [ 1, 2, 3, 2 ]
  
# Function Call
isSequenceValid(arr, N)
 
# This code is contributed by susmitakundugoaldanga


C#




// C# program for the above approach
using System;
 
class GFG{
       
// Function to check if array arr[]
// can be obtained from first N
// natural numbers or not
static void isSequenceValid(int[] B,
                            int N)
{
    for(int i = 0; i < N; i++)
    {
        if ((i + 1) % B[i] != 0)
        {
            Console.WriteLine("No");
            return;
        }
    }
    Console.WriteLine("Yes");
}
   
// Driver code
public static void Main()
{
    int N = 4;
    int[] arr = { 1, 2, 3, 2 };
      
    // Function Call
    isSequenceValid(arr, N);
}
}
 
// This code is contributed by code_hunt


Javascript




<script>
// Javascript program to implement
// the above approach
 
// Function to check if array arr[]
// can be obtained from first N
// natural numbers or not
function isSequenceValid(B, N)
{
    for(let i = 0; i < N; i++)
    {
        if ((i + 1) % B[i] != 0)
        {
            document.write("No");
            return;
        }
    }
    document.write("Yes");
}
 
// Driver code
 
    let N = 4;
    let arr = [ 1, 2, 3, 2 ];
      
    // Function Call
    isSequenceValid(arr, N);
     
    // This code is contributed by souravghosh0416.
</script>


Output: 

Yes

 

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments