Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIN digit numbers divisible by 5 formed from the M digits

N digit numbers divisible by 5 formed from the M digits

Given M unique digits and a number N. The task is to find the number of N-digit numbers which can be formed from the given M digits, which are divisible by 5 and none of the digits is repeated.

Note: If it is not possible to form a N digit number from the given digits, print -1.

Examples: 

Input : N = 3, M = 6, digits[] = {2, 3, 5, 6, 7, 9} 
Output : 20
Input : N = 5, M = 6, digits[] = {0, 3, 5, 6, 7, 9} 
Output : 240

For a number to be divisible by 5, the only condition is that the digit at the unit place in the number must be either 0 or 5.
So, to find the count of numbers that are divisible by 5 and can be formed from the given digits, do the following:  

  • Check if the given digits contain both 0 and 5.
  • If the given digits contain both 0 and 5, then the unit place can be filled in 2 ways otherwise the unit place can be filled in 1 way.
  • Now, the tens place can now be filled by any of the remaining M-1 digits. So, there are (M-1) ways of filling the tens place.
  • Similarly, the hundred’s place can now be filled by any of the remaining (M-2) digits and so on.

Therefore, if the given digits have both 0 and 5:  

Required number of numbers = 2 * (M-1)* (M-2)...N-times. 

Otherwise, if the given digits have either one of 0 and 5 and not both:  

Required number of numbers = 1 * (M-1)* (M-2)...N-times. 

Below is the implementation of the above approach. 

C++




// CPP program to find the count of all
// possible N digit numbers which are
// divisible by 5 formed from M digits
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the count of all
// possible N digit numbers which are
// divisible by 5 formed from M digits
int numbers(int n, int arr[], int m)
{
    int isZero = 0, isFive = 0;
    int result = 0;
 
    // If it is not possible to form
    // n digit number from the given
    // m digits without repetition
    if (m < n) {
        return -1;
    }
 
    for (int i = 0; i < m; i++) {
        if (arr[i] == 0)
            isZero = 1;
 
        if (arr[i] == 5)
            isFive = 1;
    }
 
    // If both zero and five exists
    if (isZero && isFive) {
        result = 2;
 
        // Remaining N-1 iterations
        for (int i = 0; i < n - 1; i++) {
            result = result * (--m);
        }
    }
    else if (isZero || isFive) {
        result = 1;
 
        // Remaining N-1 iterations
        for (int i = 0; i < n - 1; i++) {
            result = result * (--m);
        }
    }
    else
        result = -1;
 
    return result;
}
 
// Driver code
int main()
{
    int n = 3, m = 6;
 
    int arr[] = { 2, 3, 5, 6, 7, 9 };
 
    cout << numbers(n, arr, m);
 
    return 0;
}


Java




// Java program to find the count of all
// possible N digit numbers which are
// divisible by 5 formed from M digits
 
class GFG {
 
// Function to find the count of all
// possible N digit numbers which are
// divisible by 5 formed from M digits
    static int numbers(int n, int arr[], int m) {
        int isZero = 0, isFive = 0;
        int result = 0;
 
        // If it is not possible to form
        // n digit number from the given
        // m digits without repetition
        if (m < n) {
            return -1;
        }
 
        for (int i = 0; i < m; i++) {
            if (arr[i] == 0) {
                isZero = 1;
            }
 
            if (arr[i] == 5) {
                isFive = 1;
            }
        }
 
        // If both zero and five exists
        if (isZero == 1 && isFive == 1) {
            result = 2;
 
            // Remaining N-1 iterations
            for (int i = 0; i < n - 1; i++) {
                result = result * (--m);
            }
        } else if (isZero == 1 || isFive == 1) {
            result = 1;
 
            // Remaining N-1 iterations
            for (int i = 0; i < n - 1; i++) {
                result = result * (--m);
            }
        } else {
            result = -1;
        }
 
        return result;
    }
 
// Driver code
    public static void main(String[] args) {
        int n = 3, m = 6;
 
        int arr[] = {2, 3, 5, 6, 7, 9};
        System.out.println(numbers(n, arr, m));
 
    }
}
// This code is contributed by RAJPUT-JI


Python 3




# Python 3 program to find the count
# of all possible N digit numbers which
# are divisible by 5 formed from M digits
 
# Function to find the count of all
# possible N digit numbers which are
# divisible by 5 formed from M digits
def numbers(n, arr, m):
 
    isZero = 0
    isFive = 0
    result = 0
 
    # If it is not possible to form
    # n digit number from the given
    # m digits without repetition
    if (m < n) :
        return -1
 
    for i in range(m) :
        if (arr[i] == 0):
            isZero = 1
 
        if (arr[i] == 5):
            isFive = 1
 
    # If both zero and five exists
    if (isZero and isFive) :
        result = 2
 
        # Remaining N-1 iterations
        for i in range( n - 1):
            m -= 1
            result = result * (m)
 
    elif (isZero or isFive) :
        result = 1
 
        # Remaining N-1 iterations
        for i in range(n - 1) :
            m -= 1
            result = result * (m)
    else:
        result = -1
 
    return result
 
# Driver code
if __name__ == "__main__":
    n = 3
    m = 6
 
    arr = [ 2, 3, 5, 6, 7, 9]
 
    print(numbers(n, arr, m))
 
# This code is contributed by ChitraNayal


C#




// C# program to find the count of all
// possible N digit numbers which are
// divisible by 5 formed from M digits
using System;
public class GFG {
 
// Function to find the count of all
// possible N digit numbers which are
// divisible by 5 formed from M digits
    static int numbers(int n, int []arr, int m) {
        int isZero = 0, isFive = 0;
        int result = 0;
 
        // If it is not possible to form
        // n digit number from the given
        // m digits without repetition
        if (m < n) {
            return -1;
        }
 
        for (int i = 0; i < m; i++) {
            if (arr[i] == 0) {
                isZero = 1;
            }
 
            if (arr[i] == 5) {
                isFive = 1;
            }
        }
 
        // If both zero and five exists
        if (isZero == 1 && isFive == 1) {
            result = 2;
 
            // Remaining N-1 iterations
            for (int i = 0; i < n - 1; i++) {
                result = result * (--m);
            }
        } else if (isZero == 1 || isFive == 1) {
            result = 1;
 
            // Remaining N-1 iterations
            for (int i = 0; i < n - 1; i++) {
                result = result * (--m);
            }
        } else {
            result = -1;
        }
 
        return result;
    }
 
// Driver code
    public static void Main() {
        int n = 3, m = 6;
 
        int []arr = {2, 3, 5, 6, 7, 9};
        Console.WriteLine(numbers(n, arr, m));
 
    }
}
// This code is contributed by RAJPUT-JI


PHP




<?php
// PHP program to find the count of all
// possible N digit numbers which are
// divisible by 5 formed from M digits
 
// Function to find the count of all
// possible N digit numbers which are
// divisible by 5 formed from M digits
function numbers($n, $arr, $m)
{
    $isZero = 0;
    $isFive = 0;
    $result = 0;
 
    // If it is not possible to form
    // n digit number from the given
    // m digits without repetition
    if ($m < $n)
    {
        return -1;
    }
 
    for ($i = 0; $i < $m; $i++)
    {
        if ($arr[$i] == 0)
            $isZero = 1;
 
        if ($arr[$i] == 5)
            $isFive = 1;
    }
 
    // If both zero and five exists
    if ($isZero && $isFive)
    {
        $result = 2;
 
        // Remaining N-1 iterations
        for ($i = 0; $i < $n - 1; $i++)
        {
            $result = $result * (--$m);
        }
    }
    else if ($isZero || $isFive)
    {
        $result = 1;
 
        // Remaining N-1 iterations
        for ($i = 0; $i < $n - 1; $i++)
        {
            $result = $result * (--$m);
        }
    }
    else
        $result = -1;
 
    return $result;
}
 
// Driver code
$n = 3;
$m = 6;
 
$arr = array( 2, 3, 5, 6, 7, 9 );
 
echo numbers($n, $arr, $m);
 
// This code is contributed by jit_t
?>


Javascript




<script>
    // Javascript program to find the count of all
    // possible N digit numbers which are
    // divisible by 5 formed from M digits
     
    // Function to find the count of all
    // possible N digit numbers which are
    // divisible by 5 formed from M digits
    function numbers(n, arr, m) {
        let isZero = 0, isFive = 0;
        let result = 0;
   
        // If it is not possible to form
        // n digit number from the given
        // m digits without repetition
        if (m < n) {
            return -1;
        }
   
        for (let i = 0; i < m; i++) {
            if (arr[i] == 0) {
                isZero = 1;
            }
   
            if (arr[i] == 5) {
                isFive = 1;
            }
        }
   
        // If both zero and five exists
        if (isZero == 1 && isFive == 1) {
            result = 2;
   
            // Remaining N-1 iterations
            for (let i = 0; i < n - 1; i++) {
                result = result * (--m);
            }
        } else if (isZero == 1 || isFive == 1) {
            result = 1;
   
            // Remaining N-1 iterations
            for (let i = 0; i < n - 1; i++) {
                result = result * (--m);
            }
        } else {
            result = -1;
        }
   
        return result;
    }
     
    let n = 3, m = 6;
   
    let arr = [2, 3, 5, 6, 7, 9];
    document.write(numbers(n, arr, m));
     
</script>


Output: 

20

 

Time Complexity: O(m + n), Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments