Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIMinimum replacement of pairs by their LCM required to reduce given array...

Minimum replacement of pairs by their LCM required to reduce given array to its LCM

Given an array arr[] consisting of N positive integers, the task is to find the minimum number of pairs (arr[i], arr[j]) from the given array needed to be replaced with their LCM such that the array is reduced to a single element equal to the LCM of the initial array.
Examples: 

Input: arr[] = {1, 2, 3, 4} 
Output:
Explanation: 
LCM of the array = 12 
Step 1: LCM(3, 4) = 12. Therefore array is modified to {1, 2, 12} 
Step 2: LCM(1, 12) = 12. Therefore array is modified to {2, 12} 
Step 3: LCM(2, 12) = 12. Therefore array is modified to {12}
Input: arr[] = {7, 9, 3} 
Output:
Explanation: 
LCM of the array = 63 
Step 1: LCM(7, 9) = 63. Therefore array is modified to {63, 3} 
Step 2: LCM(63, 3) = 63. Therefore array is modified to {63} 
 

Naive Approach: The idea is to generate all possible pairs and for each pair, replace them by their LCM and calculate the number of steps required to reduce them to a single array element equal to their LCM. Print the minimum number of operations required.
Time Complexity: O((N!)*log N) 
Auxiliary Space: O(N) 

Efficient Approach: The above approach can be optimized based on the following observations: 

  • The LCM of an array is equal to the product of all prime numbers in the array.
  • In (X – 1) steps, the LCM of all the X prime numbers can be obtained using two numbers as pairs.
  • In next (N – 2) steps convert the rest (N – 2) elements equals to the LCM of the array.
  • Therefore, the total number of steps is given by: 
     

(N – 2) + (X – 1) for N > 2 
 

  • For N = 1, the number of operations is simply 0 and for N = 2, the number of operations is 1.

Steps:  

  1. If N = 1 then the count of steps is 0.
  2. If N = 2 then the count of steps is 1.
  3. Generate all primes up to N using Sieve Of Eratosthenes.
  4. Store the count of primes in a variable, say X.
  5. The total count of operations is given by: 
     

(N – 2) + (X – 1) for N > 2  

Below is the implementation of the above approach:
 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
const int maxm = 10001;
 
// Boolean array to set or unset
// prime non-prime indices
bool prime[maxm];
 
// Stores the prefix sum of the count
// of prime numbers
int prime_number[maxm];
 
// Function to check if a number
// is prime or not from 0 to N
void SieveOfEratosthenes()
{
    memset(prime, true, sizeof(prime));
 
    for (int p = 2; p * p < maxm; p++) {
 
        // If p is a prime
        if (prime[p] == true) {
 
            // Set its multiples as
            // non-prime
            for (int i = p * p; i < maxm;
                i += p)
                prime[i] = false;
        }
    }
 
    prime[0] = false;
    prime[1] = false;
}
 
// Function to store the count of
// prime numbers
void num_prime()
{
    prime_number[0] = 0;
 
    for (int i = 1; i <= maxm; i++)
 
        prime_number[i]
            = prime_number[i - 1]
            + prime[i];
}
 
// Function to count the operations
// to reduce the array to one element
// by replacing each pair with its LCM
void min_steps(int arr[], int n)
{
    // Generating Prime Number
    SieveOfEratosthenes();
 
    num_prime();
 
    // Corner Case
    if (n == 1)
        cout << "0\n";
 
    else if (n == 2)
        cout << "1\n";
 
    else
        cout << prime_number[n] - 1
                    + (n - 2);
}
 
// Driver Code
int main()
{
    // Given array arr[]
    int arr[] = { 5, 4, 3, 2, 1 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    min_steps(arr, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
     
static final int maxm = 10001;
 
// Boolean array to set or unset
// prime non-prime indices
static boolean prime[];
 
// Stores the prefix sum of the count
// of prime numbers
static int prime_number[];
 
// Function to check if a number
// is prime or not from 0 to N
static void SieveOfEratosthenes()
{
    Arrays.fill(prime,true);
 
    for(int p = 2; p * p < maxm; p++)
    {
         
        // If p is a prime
        if (prime[p] == true)
        {
             
            // Set its multiples as
            // non-prime
            for(int i = p * p; i < maxm; i += p)
                prime[i] = false;
        }
    }
    prime[0] = false;
    prime[1] = false;
}
 
// Function to store the count of
// prime numbers
static void num_prime()
{
    prime_number[0] = 0;
 
    for(int i = 1; i <= maxm; i++)
    {
        int tmp;
        if(prime[i] == true)
        {
            tmp = 1;
        }
        else
        {
            tmp = 0;
        }
        prime_number[i] = prime_number[i - 1] + tmp;
    }
}
 
// Function to count the operations
// to reduce the array to one element
// by replacing each pair with its LCM
static void min_steps(int arr[], int n)
{
     
    // Generating Prime Number
    SieveOfEratosthenes();
 
    num_prime();
 
    // Corner Case
    if (n == 1)
    {
        System.out.println("0");
    }
    else if (n == 2)
    {
        System.out.println("1");
    }
    else
    {
        System.out.println(prime_number[n] - 1 +
                                        (n - 2));
    }
}
 
// Driver code   
public static void main(String[] args)
{
    prime = new boolean[maxm + 1];
     
    // Stores the prefix sum of the count
    // of prime numbers
    prime_number = new int[maxm + 1];
     
    // Given array arr[]
    int arr[] = { 5, 4, 3, 2, 1 };
    int N = arr.length;
     
    // Function call
    min_steps(arr, N);
}
}
 
// This code is contributed by rutvik_56


Python3




# Python3 program for
# the above approach
maxm = 10001;
 
# Boolean array to set or unset
# prime non-prime indices
prime = [True] * (maxm + 1);
 
# Stores the prefix sum of the count
# of prime numbers
prime_number = [0] * (maxm + 1);
 
# Function to check if a number
# is prime or not from 0 to N
def SieveOfEratosthenes():
 
    for p in range(2, (int(maxm ** 1 / 2))):
 
        # If p is a prime
        if (prime[p] == True):
 
            # Set its multiples as
            # non-prime
            for i in range(p * p, maxm, p):
                prime[i] = False;
 
    prime[0] = False;
    prime[1] = False;
 
# Function to store the count of
# prime numbers
def num_prime():
    prime_number[0] = 0;
 
    for i in range(1, maxm + 1):
        tmp = -1;
        if (prime[i] == True):
            tmp = 1;
        else:
            tmp = 0;
 
        prime_number[i] = prime_number[i - 1] + tmp;
 
 
# Function to count the operations
# to reduce the array to one element
# by replacing each pair with its LCM
def min_steps(arr, n):
   
    # Generating Prime Number
    SieveOfEratosthenes();
 
    num_prime();
 
    # Corner Case
    if (n == 1):
        print("0");
    elif (n == 2):
        print("1");
    else:
        print(prime_number[n] - 1 + (n - 2));
 
# Driver code
if __name__ == '__main__':
   
    # Given array arr
    arr = [5, 4, 3, 2, 1];
    N = len(arr);
 
    # Function call
    min_steps(arr, N);
 
# This code is contributed by Rajput-Ji


C#




// C# program for the above approach
using System;
class GFG{
     
static readonly int maxm = 10001;
 
// Boolean array to set or unset
// prime non-prime indices
static bool []prime;
 
// Stores the prefix sum of the count
// of prime numbers
static int []prime_number;
 
// Function to check if a number
// is prime or not from 0 to N
static void SieveOfEratosthenes()
{
    for(int i = 0; i < prime.Length; i++)
        prime[i] = true;
    for(int p = 2; p * p < maxm; p++)
    {       
        // If p is a prime
        if (prime[p] == true)
        {           
            // Set its multiples as
            // non-prime
            for(int i = p * p; i < maxm;
                i += p)
                prime[i] = false;
        }
    }
    prime[0] = false;
    prime[1] = false;
}
 
// Function to store the count of
// prime numbers
static void num_prime()
{
    prime_number[0] = 0;
 
    for(int i = 1; i <= maxm; i++)
    {
        int tmp;
        if(prime[i] == true)
        {
            tmp = 1;
        }
        else
        {
            tmp = 0;
        }
        prime_number[i] = prime_number[i - 1] +
                          tmp;
    }
}
 
// Function to count the operations
// to reduce the array to one element
// by replacing each pair with its LCM
static void min_steps(int []arr, int n)
{   
    // Generating Prime Number
    SieveOfEratosthenes();
 
    num_prime();
 
    // Corner Case
    if (n == 1)
    {
        Console.WriteLine("0");
    }
    else if (n == 2)
    {
        Console.WriteLine("1");
    }
    else
    {
        Console.WriteLine(prime_number[n] - 1 +
                          (n - 2));
    }
}
 
// Driver code   
public static void Main(String[] args)
{
    prime = new bool[maxm + 1];
     
    // Stores the prefix sum of the count
    // of prime numbers
    prime_number = new int[maxm + 1];
     
    // Given array []arr
    int []arr = {5, 4, 3, 2, 1};
    int N = arr.Length;
     
    // Function call
    min_steps(arr, N);
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// javascript program for the above approach
     const maxm = 10001;
 
    // Boolean array to set or unset
    // prime non-prime indices
    var prime = Array();
 
    // Stores the prefix sum of the count
    // of prime numbers
    var prime_number = Array();
 
    // Function to check if a number
    // is prime or not from 0 to N
    function SieveOfEratosthenes()
    {
        for(i = 0; i < maxm; i++)
        prime[i] = true;
        for (p = 2; p * p < maxm; p++)
        {
 
            // If p is a prime
            if (prime[p] == true)
            {
 
                // Set its multiples as
                // non-prime
                for (i = p * p; i < maxm; i += p)
                    prime[i] = false;
            }
        }
        prime[0] = false;
        prime[1] = false;
    }
 
    // Function to store the count of
    // prime numbers
    function num_prime() {
        prime_number[0] = 0;
 
        for (i = 1; i <= maxm; i++) {
            var tmp;
            if (prime[i] == true) {
                tmp = 1;
            } else {
                tmp = 0;
            }
            prime_number[i] = prime_number[i - 1] + tmp;
        }
    }
 
    // Function to count the operations
    // to reduce the array to one element
    // by replacing each pair with its LCM
    function min_steps(arr , n) {
 
        // Generating Prime Number
        SieveOfEratosthenes();
 
        num_prime();
 
        // Corner Case
        if (n == 1) {
            document.write("0");
        } else if (n == 2) {
            document.write("1");
        } else {
            document.write(prime_number[n] - 1 + (n - 2));
        }
    }
 
    // Driver code
     
        // Stores the prefix sum of the count
        // of prime numbers
        prime_number.fill(0);
 
        // Given array arr
        var arr = [ 5, 4, 3, 2, 1 ];
        var N = arr.length;
 
        // Function call
        min_steps(arr, N);
 
// This code is contributed by aashish1995
</script>


Output: 

5

 

Time Complexity: O(N + log(log(maxm)) 
Auxiliary Space: O(maxm) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments