Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIFind a triplet (A, B, C) such that 3*A + 5*B +...

Find a triplet (A, B, C) such that 3*A + 5*B + 7*C is equal to N

Given an integer N, the task is to find three positive integers A, B, and C such that the value of the expression (3*A + 5*B + 7*C) is equal to N. If no such triplet exists, then print “-1”.

Examples:

Input: N = 19
Output:
A = 3
B = 2
C = 0
Explanation: Setting A, B, and C equal to 0, 1, and 2 respectively, the evaluated value of the expression = 3 * A + 5 * B + 7 * C = 3 * 3 + 5 * 2 + 7 * 0 = 19, which is the same as N (= 19).

Input: N = 4
Output: -1

Naive Approach: The simplest approach to solve the problem is to generate all possible triplets with integers up to N and check if there exists any triplet (A, B, C), such that the value of (3*A + 5*B + 7*C) is equal to N. If found to be true, then print that triplet. Otherwise, print “-1”
Time Complexity: O(N3)
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized based on the following observation that the value of A lies over the range [0, N / 3], the value of B lies over the range [0, N / 5], and the value of C lies over the range [0, N / 7]. Follow the steps below to solve the problem:

  • Iterate over the range [0, N/7] and perform the following operations:
  • After completing the above steps, if there doesn’t exist any such triplet then print “-1”.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find a triplet (A, B, C)
// such that 3 * A + 5 * B + 7 * C is N
void CalculateValues(int N){
 
  int A = 0, B = 0, C = 0;
 
  // Iterate over the range [0, N//7]
  for (C = 0; C < N/7; C++)
  {
 
    // Iterate over the range [0, N//5]
    for ( B = 0; B < N/5; B++)
    {
 
      // Find the value of A
      int A = N - 7 * C - 5 * B;
 
      // If A is greater than or equal
      // to 0 and divisible by 3
      if (A >= 0 && A % 3 == 0)
      {
        cout << "A = " << A / 3 << ", B = " << B << ", C = "<< C << endl;
 
        return;
      }
    }
  }
 
  // Otherwise, print -1
  cout << -1 << endl;
 
}
 
// Driver Code
int main()
{
  int N = 19;
  CalculateValues(19);
 
  return 0;
}
 
// This code is contributed by susmitakundugoaldanga.


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG
{
 
  // Function to find a triplet (A, B, C)
  // such that 3 * A + 5 * B + 7 * C is N
  static void CalculateValues(int N)
  {
    int A = 0, B = 0, C = 0;
 
    // Iterate over the range [0, N//7]
    for (C = 0; C < N/7; C++)
    {
 
      // Iterate over the range [0, N//5]
      for ( B = 0; B < N/5; B++)
      {
 
        // Find the value of A
        A = N - 7 * C - 5 * B;
 
        // If A is greater than or equal
        // to 0 and divisible by 3
        if (A >= 0 && A % 3 == 0)
        {
          System.out.print("A = " + A / 3 + ", B = " + B + ", C = "+ C);
 
          return;
        }
      }
    }
 
    // Otherwise, print -1
    System.out.println(-1);
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int N = 19;
    CalculateValues(19);
  }
}
 
// This code is contributed by souravghosh0416.


Python3




# Python program for the above approach
 
# Function to find a triplet (A, B, C)
# such that 3 * A + 5 * B + 7 * C is N
def CalculateValues(N):
   
    # Iterate over the range [0, N//7]
    for C in range(0, N//7 + 1):
         
        # Iterate over the range [0, N//5]
        for B in range(0, N//5 + 1):
 
            # Find the value of A
            A = N - 7 * C - 5 * B
 
            # If A is greater than or equal
            # to 0 and divisible by 3
            if (A >= 0 and A % 3 == 0):
                print("A =", A / 3, ", B =", B, ", \
                       C =", C, sep =" ")
                return
     
    # Otherwise, print -1
    print(-1)
    return
 
 
# Driver Code
if __name__ == '__main__':
   
    N = 19
    CalculateValues(19)


C#




// C# program for the above approach
using System;
 
class GFG{
 
  // Function to find a triplet (A, B, C)
  // such that 3 * A + 5 * B + 7 * C is N
  static void CalculateValues(int N)
  {
    int A = 0, B = 0, C = 0;
 
    // Iterate over the range [0, N//7]
    for (C = 0; C < N/7; C++)
    {
 
      // Iterate over the range [0, N//5]
      for ( B = 0; B < N/5; B++)
      {
 
        // Find the value of A
        A = N - 7 * C - 5 * B;
 
        // If A is greater than or equal
        // to 0 and divisible by 3
        if (A >= 0 && A % 3 == 0)
        {
          Console.Write("A = " + A / 3 + ", B = " + B + ", C = "+ C);
 
          return;
        }
      }
    }
 
    // Otherwise, print -1
    Console.WriteLine(-1);
  }
 
  // Driver Code
  static public void Main()
  {
    int N = 19;
    CalculateValues(19);
  }
}
 
// This code is contributed by splevel62.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find a triplet (A, B, C)
// such that 3 * A + 5 * B + 7 * C is N
function CalculateValues(N){
 
var A = 0, B = 0, C = 0;
 
// Iterate over the range [0, N//7]
for (C = 0; C < N/7; C++)
{
 
    // Iterate over the range [0, N//5]
    for ( B = 0; B < N/5; B++)
    {
 
    // Find the value of A
    var A = N - 7 * C - 5 * B;
 
    // If A is greater than or equal
    // to 0 and divisible by 3
    if (A >= 0 && A % 3 == 0)
    {
        document.write( "A = " + A / 3 + ", B = " + B + ", C = "+ C );
 
        return;
    }
    }
}
 
// Otherwise, print -1
document.write( -1 );
 
}
 
// Driver Code
 
var N = 19;
CalculateValues(19);
 
 
</script>


Output

A = 3, B = 2, C = 0

Time Complexity: O(N2)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments