Monday, November 25, 2024
Google search engine
HomeData Modelling & AIMaximum pairs from given Graph where elements belong to different Connected Component

Maximum pairs from given Graph where elements belong to different Connected Component

Given a graph with N vertices numbered from 0 to (N-1) and a matrix edges[][] representing the edges of the graph, the task is to find out the maximum number of pairs that can be formed where each element of a pair belongs to different connected components of the graph.

Examples:

Input: N = 4, edges = {{1, 2}, {2, 3}}
Output: 3
Explanation: Total nodes 4 (from 0 to 3). 
There are 3 possible pairs: {0, 1}, {0, 2} and {0, 3}.
No pair between {1, 2} or {1, 3} or {2, 3} because they belong to the same connected component.
 

graph with given edges

Input: N = 2, edges = {0, 1}
Output: 0
Explanation: All the elements belong to the same connected component.

 

Approach: The problem can be solved by counting the number of connected components and the number of nodes in each connected component. Total N*(N-1)/2 nodes can be formed from the given N nodes. But, to get the required number of pairs subtract the number of pairs that can be formed among the nodes of each connected component. Follow the steps mentioned below:

  • Initiate total as the total number of possible pairs which is N*(N-1)/2.
  • Use DFS to find the different connected components and for each component:
    • Find out the number of nodes in that connected component and store that in a variable (say cnt).
    • Subtract the number of pairs that can be formed by these nodes among themselves i.e. cnt*(cnt – 1)/2.
  • After all the nodes are visited, the remaining value of total is the final answer.

Below is the implementation of the above approach

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// DFS function
void dfs(vector<int> adj[], int src,
         bool visited[], int& cnt)
{
    visited[src] = true;
 
    // Count number of nodes
    // in current component
    cnt++;
    for (auto it : adj[src]) {
        if (!visited[it]) {
            dfs(adj, it, visited, cnt);
        }
    }
}
 
// Function to count total possible pairs
int maxPairs(int N,
             vector<vector<int> >& edges)
{
    vector<int> adj[N];
 
    // Building the adjacency matrix
    for (int i = 0; i < edges.size(); i++) {
        adj[edges[i][0]].push_back(
            edges[i][1]);
        adj[edges[i][1]].push_back(
            edges[i][0]);
    }
 
    // Maximum total pairs
    int total = N * (N - 1) / 2;
 
    // Array to keep track of components
    bool visited[N + 1] = { false };
 
    // Loop to count total possible pairs
    for (int i = 0; i < N; i++) {
        if (visited[i] == false) {
            int cnt = 0;
 
            dfs(adj, i, visited, cnt);
 
            // Subtract pairs from
            // the same connected component
            total -= (cnt * (cnt - 1) / 2);
        }
    }
    return total;
}
 
// Driver code
int main()
{
    int N = 4;
    vector<vector<int> > edges = { { 1, 2 },
                                   { 2, 3 } };
 
    int result = maxPairs(N, edges);
    cout << result;
    return 0;
}


Java




import java.io.*;
import java.util.*;
 
class GFG {
 
  static int count = 0;
 
  // DFS function
  public static void
    dfs(ArrayList<ArrayList<Integer> > adj, int src,
        boolean visited[])
  {
    visited[src] = true;
 
    // Count number of nodes
    // in current component
    count++;
    for (int it : adj.get(src)) {
      if (!visited[it]) {
        dfs(adj, it, visited);
      }
    }
  }
 
  // Function to count total possible pairs
  public static int
    maxPairs(int N, ArrayList<ArrayList<Integer> > edges)
  {
    ArrayList<ArrayList<Integer> > adj
      = new ArrayList<ArrayList<Integer> >();
 
    for (int i = 0; i < N; i++) {
 
      ArrayList<Integer> temp
        = new ArrayList<Integer>();
      adj.add(temp);
    }
 
    // Building the adjacency matrix
    for (int i = 0; i < edges.size(); i++) {
 
      ArrayList<Integer> temp
        = adj.get(edges.get(i).get(0));
      temp.add(edges.get(i).get(1));
      adj.set(edges.get(i).get(0), temp);
 
      temp = adj.get(edges.get(i).get(1));
      temp.add(edges.get(i).get(0));
      adj.set(edges.get(i).get(1), temp);
    }
 
    // Maximum total pairs
    int total = N * (N - 1) / 2;
 
    // Array to keep track of components
 
    boolean[] visited = new boolean[N + 1];
 
    for (int i = 0; i <= N; i++) {
      visited[i] = false;
    }
 
    // Loop to count total possible pairs
    for (int i = 0; i < N; i++) {
      if (visited[i] == false) {
 
        count = 0;
 
        dfs(adj, i, visited);
 
        // Subtract pairs from
        // the same connected component
        total -= (count * (count - 1) / 2);
      }
    }
    return total;
  }
  // Driver code
  public static void main(String[] args)
  {
 
    int N = 4;
    ArrayList<ArrayList<Integer> > edges
      = new ArrayList<ArrayList<Integer> >();
    edges.add(
      new ArrayList<Integer>(Arrays.asList(1, 2)));
    edges.add(
      new ArrayList<Integer>(Arrays.asList(2, 3)));
 
    int result = maxPairs(N, edges);
    System.out.println(result);
  }
}
 
// This code is contributed by Palak Gupta


Python3




# python3 code to implement the approach
 
 
visited = []
cnt = 0
 
# DFS function
 
 
def dfs(adj, src):
    global visited
    global cnt
    visited[src] = True
 
    # Count number of nodes
    # in current component
    cnt += 1
    for it in adj[src]:
        if (not visited[it]):
            dfs(adj, it)
 
 
# Function to count total possible pairs
def maxPairs(N, edges):
    global visited
    global cnt
    adj = [[] for _ in range(N)]
 
    # Building the adjacency matrix
    for i in range(0, len(edges)):
        adj[edges[i][0]].append(edges[i][1])
        adj[edges[i][1]].append(edges[i][0])
 
        # Maximum total pairs
    total = (N * (N - 1)) // 2
 
    # Array to keep track of components
    for i in range(N + 1):
        visited.append(False)
 
        # Loop to count total possible pairs
    for i in range(0, N):
        if (visited[i] == False):
            cnt = 0
 
            dfs(adj, i)
 
            # Subtract pairs from
            # the same connected component
            total -= ((cnt * (cnt - 1)) // 2)
 
    return total
 
 
# Driver code
if __name__ == "__main__":
 
    N = 4
    edges = [[1, 2], [2, 3]]
 
    result = maxPairs(N, edges)
    print(result)
 
    # This code is contributed by rakeshsahni


C#




using System;
using System.Collections.Generic;
class GFG
{
 
  static int count = 0;
 
  // DFS function
  public static void
    dfs(List<List<int>> adj, int src, bool[] visited)
  {
    visited[src] = true;
 
    // Count number of nodes
    // in current component
    count++;
    foreach (int it in adj[src])
    {
      if (!visited[it])
      {
        dfs(adj, it, visited);
      }
    }
  }
 
  // Function to count total possible pairs
  public static int
    maxPairs(int N, List<List<int>> edges)
  {
    List<List<int>> adj = new List<List<int>>();
 
    for (int i = 0; i < N; i++)
    {
 
      List<int> temp = new List<int>();
      adj.Add(temp);
    }
 
    // Building the adjacency matrix
    for (int i = 0; i < edges.Count; i++)
    {
 
      List<int> temp = adj[edges[i][0]];
      temp.Add(edges[i][1]);
      adj[edges[i][0]] = temp;
 
      temp = adj[edges[i][1]];
      temp.Add(edges[i][0]);
      adj[edges[i][1]] = temp;
    }
 
    // Maximum total pairs
    int total = N * (N - 1) / 2;
 
    // Array to keep track of components
    bool[] visited = new bool[N + 1];
 
    for (int i = 0; i <= N; i++)
    {
      visited[i] = false;
    }
 
    // Loop to count total possible pairs
    for (int i = 0; i < N; i++)
    {
      if (visited[i] == false)
      {
 
        count = 0;
 
        dfs(adj, i, visited);
 
        // Subtract pairs from
        // the same connected component
        total -= (count * (count - 1) / 2);
      }
    }
    return total;
  }
   
  // Driver code
  public static void Main()
  {
 
    int N = 4;
    List<List<int>> edges = new List<List<int>>();
    edges.Add(new List<int>());
    edges.Add(new List<int>());
    edges[0].Add(1);
    edges[0].Add(2);
    edges[1].Add(2);
    edges[1].Add(3);
    int result = maxPairs(N, edges);
    Console.Write(result);
  }
}
 
// This code is contributed by Saurabh Jaiswal


Javascript




<script>
      // JavaScript code for the above approach
 
      // DFS function
      function dfs(adj, src,
          visited, cnt) {
          visited[src] = true;
 
          // Count number of nodes
          // in current component
          cnt++;
          for (let it of adj[src]) {
              if (!visited[it]) {
                  dfs(adj, it, visited, cnt);
              }
          }
          return cnt;
      }
 
      // Function to count total possible pairs
      function maxPairs(N,
          edges) {
          let adj = new Array(N).fill([]);
 
          // Building the adjacency matrix
          for (let i = 0; i < edges.length; i++) {
              adj[edges[i][0]].push(
                  edges[i][1]);
              adj[edges[i][1]].push(
                  edges[i][0]);
          }
 
          // Maximum total pairs
          let total = N * (N - 1) / 2;
 
          // Array to keep track of components
          let visited = new Array(N + 1).fill(false)
 
          // Loop to count total possible pairs
          for (let i = 0; i < N; i++) {
              if (visited[i] == false) {
                  let cnt = 0;
 
                  dfs(adj, i, visited, cnt);
 
                  // Subtract pairs from
                  // the same connected component
                  total -= (cnt * (cnt - 1) / 2);
              }
          }
          return total / 2;
      }
 
      // Driver code
      let N = 4;
      let edges = [[1, 2],
      [2, 3]];
 
      let result = maxPairs(N, edges);
      document.write(result);
 
     // This code is contributed by Potta Lokesh
  </script>


 
 

Output

3

 

Time Complexity: O(N)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments