Monday, November 25, 2024
Google search engine
HomeData Modelling & AILongest subsequence with a given OR value : Dynamic Programming Approach

Longest subsequence with a given OR value : Dynamic Programming Approach

Given an array arr[], the task is to find the longest subsequence with a given OR value M. If there is no such sub-sequence then print 0.
Examples: 

Input: arr[] = {3, 7, 2, 3}, M = 3 
Output:
{3, 2, 3} is the required subsequence 
3 | 2 | 3 = 3
Input: arr[] = {2, 2}, M = 3 
Output: 0  

Approach: A simple solution is to generate all the possible sub-sequences and then find the largest among them with the required OR value. However, for smaller values of M, a dynamic programming approach can be used.
Let’s look at the recurrence relation first.  

dp[i][curr_or] = max(dp[i + 1][curr_or], dp[i + 1][curr_or | arr[i]] + 1) 
 

Let’s understand the states of DP now. Here, dp[i][curr_or] stores the longest subsequence of the subarray arr[i…N-1] such the curr_or gives M when gets ORed with this subsequence. At each step, either choose the index i and update curr_or or reject index i and continue.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define maxN 20
#define maxM 64
 
// To store the states of DP
int dp[maxN][maxM];
bool v[maxN][maxM];
 
// Function to return the required length
int findLen(int* arr, int i, int curr,
            int n, int m)
{
    // Base case
    if (i == n) {
        if (curr == m)
            return 0;
        else
            return -1;
    }
 
    // If the state has been solved before
    // return the value of the state
    if (v[i][curr])
        return dp[i][curr];
 
    // Setting the state as solved
    v[i][curr] = 1;
 
    // Recurrence relation
    int l = findLen(arr, i + 1, curr, n, m);
    int r = findLen(arr, i + 1, curr | arr[i], n, m);
    dp[i][curr] = l;
    if (r != -1)
        dp[i][curr] = max(dp[i][curr], r + 1);
    return dp[i][curr];
}
 
// Driver code
int main()
{
    int arr[] = { 3, 7, 2, 3 };
    int n = sizeof(arr) / sizeof(int);
    int m = 3;
 
    int ans = findLen(arr, 0, 0, n, m);
    if (ans == -1)
        cout << 0;
    else
        cout << ans;
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
static int maxN = 20;
static int maxM = 64;
 
// To store the states of DP
static int [][]dp = new int[maxN][maxM];
static boolean [][]v = new boolean[maxN][maxM];
 
// Function to return the required length
static int findLen(int[] arr, int i,
                   int curr, int n, int m)
{
    // Base case
    if (i == n)
    {
        if (curr == m)
            return 0;
        else
            return -1;
    }
 
    // If the state has been solved before
    // return the value of the state
    if (v[i][curr])
        return dp[i][curr];
 
    // Setting the state as solved
    v[i][curr] = true;
 
    // Recurrence relation
    int l = findLen(arr, i + 1, curr, n, m);
    int r = findLen(arr, i + 1, curr | arr[i], n, m);
    dp[i][curr] = l;
    if (r != -1)
        dp[i][curr] = Math.max(dp[i][curr], r + 1);
    return dp[i][curr];
}
 
// Driver code
public static void main(String []args)
{
    int arr[] = { 3, 7, 2, 3 };
    int n = arr.length;
    int m = 3;
 
    int ans = findLen(arr, 0, 0, n, m);
    if (ans == -1)
        System.out.println(0);
    else
        System.out.println(ans);
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 implementation of the approach
import numpy as np
 
maxN = 20
maxM = 64
 
# To store the states of DP
dp = np.zeros((maxN, maxM));
v = np.zeros((maxN, maxM));
 
# Function to return the required length
def findLen(arr, i, curr, n, m) :
 
    # Base case
    if (i == n) :
        if (curr == m) :
            return 0;
        else :
            return -1;
 
    # If the state has been solved before
    # return the value of the state
    if (v[i][curr]) :
        return dp[i][curr];
 
    # Setting the state as solved
    v[i][curr] = 1;
 
    # Recurrence relation
    l = findLen(arr, i + 1, curr, n, m);
    r = findLen(arr, i + 1, curr | arr[i], n, m);
    dp[i][curr] = l;
    if (r != -1) :
        dp[i][curr] = max(dp[i][curr], r + 1);
    return dp[i][curr];
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 3, 7, 2, 3 ];
    n = len(arr);
    m = 3;
 
    ans = findLen(arr, 0, 0, n, m);
    if (ans == -1) :
        print(0);
    else :
        print(ans);
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
static int maxN = 20;
static int maxM = 64;
 
// To store the states of DP
static int [,]dp = new int[maxN,maxM];
static bool [,]v = new bool[maxN,maxM];
 
// Function to return the required length
static int findLen(int[] arr, int i,
                int curr, int n, int m)
{
    // Base case
    if (i == n)
    {
        if (curr == m)
            return 0;
        else
            return -1;
    }
 
    // If the state has been solved before
    // return the value of the state
    if (v[i,curr])
        return dp[i,curr];
 
    // Setting the state as solved
    v[i,curr] = true;
 
    // Recurrence relation
    int l = findLen(arr, i + 1, curr, n, m);
    int r = findLen(arr, i + 1, curr | arr[i], n, m);
    dp[i,curr] = l;
    if (r != -1)
        dp[i,curr] = Math.Max(dp[i,curr], r + 1);
    return dp[i,curr];
}
 
// Driver code
public static void Main(String []args)
{
    int []arr = { 3, 7, 2, 3 };
    int n = arr.Length;
    int m = 3;
 
    int ans = findLen(arr, 0, 0, n, m);
    if (ans == -1)
        Console.WriteLine(0);
    else
        Console.WriteLine(ans);
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// Javascript implementation of the approach
 
var maxN = 20
var maxM = 64
 
// To store the states of DP
var dp = Array.from(Array(maxN), ()=> Array(maxM));
var v = Array.from(Array(maxN), ()=> Array(maxM));
 
// Function to return the required length
function findLen(arr, i, curr, n, m)
{
    // Base case
    if (i == n) {
        if (curr == m)
            return 0;
        else
            return -1;
    }
 
    // If the state has been solved before
    // return the value of the state
    if (v[i][curr])
        return dp[i][curr];
 
    // Setting the state as solved
    v[i][curr] = 1;
 
    // Recurrence relation
    var l = findLen(arr, i + 1, curr, n, m);
    var r = findLen(arr, i + 1, curr | arr[i], n, m);
    dp[i][curr] = l;
    if (r != -1)
        dp[i][curr] = Math.max(dp[i][curr], r + 1);
    return dp[i][curr];
}
 
// Driver code
var arr = [3, 7, 2, 3];
var n = arr.length;
var m = 3;
var ans = findLen(arr, 0, 0, n, m);
if (ans == -1)
    document.write( 0);
else
    document.write( ans);
 
</script>


Output: 

3

 

Time Complexity: O(N * maxArr) where maxArr is the maximum element from the array.
Auxiliary Space: O(maxN * maxM)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments