Given an array arr[] of N elements and an integer K. The task is to find the maximum sum of elements in a subarray of size K, with each element raised to the power of its frequency in the subarray.
Examples:
Input: arr[] = { 2, 1, 2, 3, 3 }, N = 5, K = 3
Output: 11
Explanation: Required subarray of size 3 = {2, 3, 3}. The sum is 21 + 32 = 11, which is the maximum sum possible.Input: arr[] = { 4, 9, 6, 5}, N = 4, K = 3
Output: 20
Explanation: The two subarrays of size 3 are {4, 9, 6} and {9, 6, 5}. The subarray {9, 6, 5} has the sum = 20.
Naive Approach: The simplest approach is to generate all the subarrays. Then for each subarray count the frequency of elements and generate the sum. Now check the sums to find the maximum one.
Time complexity: O(N*K)
Auxiliary Space: O(N*K)
Efficient Approach: An efficient approach is to use sliding window concept to avoid generating all the subarrays. Then for each window count the frequency of the elements in it and find out the sum. The maximum sum among all the windows is the answer.
Time Complexity: O(N*K)
Auxiliary Space: O(K)
Most Efficient Approach: This idea is also based on sliding window technique. But in this approach counting frequency of each element for each window is avoided. Follow the steps below to implement the idea:
- Maintain a window of size K which denotes the subarray.
- When the window shifts one position to right subtract the contribution of the element immediately left to the window and rightmost element of the window.
- Now adjust the frequency by decrementing the frequency of the element immediately left to the window and incrementing the frequency of the rightmost element of the window.
- Add back the contributions according to the new frequencies of the elements immediately left to the window and the rightmost element of the window.
Below is the implementation of the above approach.
C++
// C++ code to implement above approach #include <bits/stdc++.h> using namespace std; #define mod 1000000007 // Function to find the maximum sum // of a K sized subarray long long int maxSum(vector< int >& arr, int N, int K) { long long int ans = 0; // Map to store frequency of elements // of the K sized subarray unordered_map< int , int > freq; for ( int j = 0; j < K; j++) { freq[arr[j]]++; } long long int sum = 0; // Sum of the first K sized subarray for ( auto m : freq) sum = (sum + (( long long int ) ( pow (m.first, m.second))) % mod)% mod; // Variable to store ans ans = max(ans, sum); for ( int i = 1; i <= N - K; i++) { // Subtract the contribution of // the element immediately left // to the subarray sum -= freq[arr[i - 1]] > 0 ? (( long long int ) ( pow (arr[i - 1], freq[arr[i - 1]])))% mod : 0; // Update the frequency of // the element immediately left // to the subarray freq[arr[i - 1]]--; // Add back the contribution of // the element immediately left // to the subarray sum += freq[arr[i - 1]] > 0 ? (( long long int ) ( pow (arr[i - 1], freq[arr[i - 1]])))% mod : 0; // Subtract the contribution of // the rightmost element // of the subarray sum -= freq[arr[i + K - 1]] > 0 ? (( long long int ) ( pow (arr[i + K - 1], freq[arr[i + K - 1]])))% mod : 0; // Update the frequency of the // rightmost element of the subarray freq[arr[i + K - 1]]++; // Add back the contribution of the // rightmost element of the subarray sum += freq[arr[i + K - 1]] > 0 ? (( long long int ) ( pow (arr[i + K - 1], freq[arr[i + K - 1]])))% mod : 0; // Update the answer ans = max(ans, sum); } return ans; } // Driver code int main() { // Declare the variable int N = 5, K = 3; vector< int > arr = { 2, 1, 2, 3, 3 }; // Output the variable to STDOUT cout << maxSum(arr, N, K); return 0; } |
Java
// Java code to implement above approach import java.util.ArrayList; import java.util.HashMap; class GFG { static int mod = 1000000007 ; // Function to find the maximum sum // of a K sized subarray static long maxSum(ArrayList<Integer> arr, int N, int K) { long ans = 0 ; // Map to store frequency of elements // of the K sized subarray HashMap<Integer, Integer> freq = new HashMap<Integer, Integer>(); for ( int j = 0 ; j < K; j++) { if (freq.containsKey(arr.get(j))) { freq.put(arr.get(j), freq.get(arr.get(j)) + 1 ); } else freq.put(arr.get(j), 1 ); } long sum = 0 ; // Sum of the first K sized subarray for ( int m : freq.keySet()) { sum = (sum + (( long ) (Math.pow(m, freq.get(m)))) % mod) % mod; } // Variable to store ans ans = Math.max(ans, sum); for ( int i = 1 ; i <= N - K; i++) { // Subtract the contribution of // the element immediately left // to the subarray if (freq.containsKey(arr.get(i - 1 ))) { sum -= freq.get(arr.get(i - 1 )) > 0 ? (( long ) (Math.pow( arr.get(i - 1 ), freq.get(arr.get(i - 1 ))))) % mod : 0 ; // Update the frequency of // the element immediately left // to the subarray freq.put(arr.get(i - 1 ), freq.get(arr.get(i - 1 )) - 1 ); // Add back the contribution of // the element immediately left // to the subarray sum += freq.get(arr.get(i - 1 )) > 0 ? (( long ) (Math.pow( arr.get(i - 1 ), freq.get(arr.get(i - 1 ))))) % mod : 0 ; } // Subtract the contribution of // the rightmost element // of the subarray if (freq.containsKey(arr.get(i + K - 1 ))) { sum -= freq.get(arr.get(i + K - 1 )) > 0 ? (( long ) (Math.pow( arr.get(i + K - 1 ), freq.get(arr.get(i + K - 1 ))))) % mod : 0 ; } // Update the frequency of the // rightmost element of the subarray if (freq.containsKey(arr.get(i + K - 1 ))) freq.put(arr.get(i + K - 1 ), freq.get(arr.get(i + K - 1 )) + 1 ); else freq.put(arr.get(i + K - 1 ), 1 ); // Add back the contribution of the // rightmost element of the subarray sum += freq.get(arr.get(i + K - 1 )) > 0 ? (( long ) (Math.pow( arr.get(i + K - 1 ), freq.get(arr.get(i + K - 1 ))))) % mod : 0 ; // Update the answer ans = Math.max(ans, sum); } return ans; } // Driver code public static void main(String args[]) { // Declare the variable int N = 5 , K = 3 ; ArrayList<Integer> arr = new ArrayList<Integer>(); arr.add( 2 ); arr.add( 1 ); arr.add( 2 ); arr.add( 3 ); arr.add( 3 ); // Output the variable to STDOUT System.out.println(maxSum(arr, N, K)); } } // This code is contributed by Saurabh Jaiswal |
Python3
# Python code for the above approach mod = 1000000007 # Function to find the maximum sum # of a K sized subarray def maxSum(arr, N, K): ans = 0 # Map to store frequency of elements # of the K sized subarray freq = [ 0 ] * 100001 for j in range (K): freq[arr[j]] + = 1 sum = 0 # Sum of the first K sized subarray for i in range ( len (freq)): if (freq[i] ! = 0 ): sum + = ((i * * freq[i]) % mod) % mod # Variable to store ans ans = max (ans, sum ) for i in range ( 1 , N - K + 1 ): # Subtract the contribution of # the element immediately left # to the subarray sum - = ((arr[i - 1 ] * * freq[arr[i - 1 ]]) ) % mod if freq[arr[i - 1 ]] > 0 else 0 # Update the frequency of # the element immediately left # to the subarray freq[arr[i - 1 ]] - = 1 # Add back the contribution of # the element immediately left # to the subarray sum + = ((arr[i - 1 ] * * freq[arr[i - 1 ]]) ) % mod if freq[arr[i - 1 ]] > 0 else 0 # Subtract the contribution of # the rightmost element # of the subarray sum - = ((arr[i + K - 1 ] * * freq[arr[i + K - 1 ]]) ) % mod if freq[arr[i + K - 1 ]] > 0 else 0 # Update the frequency of the # rightmost element of the subarray freq[arr[i + K - 1 ]] + = 1 # Add back the contribution of the # rightmost element of the subarray sum + = ((arr[i + K - 1 ] * * freq[arr[i + K - 1 ]]) ) % mod if freq[arr[i + K - 1 ]] > 0 else 0 # Update the answer print ( "ans = " ,ans, "sum = " , sum ) ans = max (ans, sum ) return ans # Driver code # Declare the variable N = 5 K = 3 arr = [ 2 , 1 , 2 , 3 , 3 ] print (maxSum(arr, N, K)) # This code is contributed by gfgking |
C#
// C# code to implement above approach using System; using System.Collections.Generic; class GFG { static int mod = 1000000007; // Function to find the maximum sum // of a K sized subarray static long maxSum(List< int > arr, int N, int K) { long ans = 0; // Map to store frequency of elements // of the K sized subarray Dictionary< int , int > freq = new Dictionary< int , int >(); for ( int j = 0; j < K; j++) { if (freq.ContainsKey(arr[j])) freq[arr[j]]++; else freq[arr[j]] = 1; } long sum = 0; // Sum of the first K sized subarray foreach (KeyValuePair< int , int > m in freq) { sum = (sum + (( long )(Math.Pow(m.Key, m.Value))) % mod) % mod; } // Variable to store ans ans = Math.Max(ans, sum); for ( int i = 1; i <= N - K; i++) { // Subtract the contribution of // the element immediately left // to the subarray if (freq.ContainsKey(arr[i - 1])) { sum -= freq[arr[i - 1]] > 0 ? (( long )(Math.Pow( arr[i - 1], freq[arr[i - 1]]))) % mod : 0; // Update the frequency of // the element immediately left // to the subarray freq[arr[i - 1]]--; // Add back the contribution of // the element immediately left // to the subarray sum += freq[arr[i - 1]] > 0 ? (( long )(Math.Pow( arr[i - 1], freq[arr[i - 1]]))) % mod : 0; } // Subtract the contribution of // the rightmost element // of the subarray if (freq.ContainsKey(arr[i + K - 1])) { sum -= freq[arr[i + K - 1]] > 0 ? (( long )(Math.Pow( arr[i + K - 1], freq[arr[i + K - 1]]))) % mod : 0; } // Update the frequency of the // rightmost element of the subarray if (freq.ContainsKey(arr[i + K - 1])) freq[arr[i + K - 1]]++; else freq[arr[i + K - 1]] = 1; // Add back the contribution of the // rightmost element of the subarray sum += freq[arr[i + K - 1]] > 0 ? (( long )(Math.Pow( arr[i + K - 1], freq[arr[i + K - 1]]))) % mod : 0; // Update the answer ans = Math.Max(ans, sum); } return ans; } // Driver code public static void Main() { // Declare the variable int N = 5, K = 3; List< int > arr = new List< int >() { 2, 1, 2, 3, 3 }; // Output the variable to STDOUT Console.WriteLine(maxSum(arr, N, K)); } } // This code is contributed by ukasp. |
Javascript
<script> // JavaScript code for the above approach let mod = 1000000007 // Function to find the maximum sum // of a K sized subarray function maxSum(arr, N, K) { let ans = 0; // Map to store frequency of elements // of the K sized subarray let freq = new Array(100001).fill(0); for (let j = 0; j < K; j++) { freq[arr[j]]++; } let sum = 0; // Sum of the first K sized subarray for (let i = 0; i < freq.length; i++) if (freq[i] != 0) { sum = (sum + ( (Math.pow(i, freq[i]))) % mod) % mod; } // Variable to store ans ans = Math.max(ans, sum); for (let i = 1; i <= N - K; i++) { // Subtract the contribution of // the element immediately left // to the subarray sum -= freq[arr[i - 1]] > 0 ? ( (Math.pow(arr[i - 1], freq[arr[i - 1]]))) % mod : 0; // Update the frequency of // the element immediately left // to the subarray freq[arr[i - 1]]--; // Add back the contribution of // the element immediately left // to the subarray sum += freq[arr[i - 1]] > 0 ? ( (Math.pow(arr[i - 1], freq[arr[i - 1]]))) % mod : 0; // Subtract the contribution of // the rightmost element // of the subarray sum -= freq[arr[i + K - 1]] > 0 ? ( (Math.pow(arr[i + K - 1], freq[arr[i + K - 1]]))) % mod : 0; // Update the frequency of the // rightmost element of the subarray freq[arr[i + K - 1]]++; // Add back the contribution of the // rightmost element of the subarray sum += freq[arr[i + K - 1]] > 0 ? ( (Math.pow(arr[i + K - 1], freq[arr[i + K - 1]]))) % mod : 0; // Update the answer ans = Math.max(ans, sum); } return ans; } // Driver code // Declare the variable let N = 5, K = 3; let arr = [2, 1, 2, 3, 3]; document.write(maxSum(arr, N, K)); // This code is contributed by Potta Lokesh </script> |
11
Time Complexity: O(N)
Auxiliary Space: O(K)
Approach: Frequency-Based Maximum Sum Subarray
Here are the steps for the “Frequency-Based Maximum Sum Subarray” approach:
- Create an empty dictionary to store the frequency of each element in the given array.
- Iterate over the given array, and for each element, increment its frequency in the dictionary.
- Initialize a variable max_sum to negative infinity.
- Iterate over all possible subarrays of length k. For each subarray, calculate the sum of each element raised to the power of its frequency in the subarray. To do this, iterate over the subarray, and for each element, use its frequency from the dictionary to calculate its contribution to the subarray sum. Add up the contributions for all elements in the subarray to get the subarray sum.
- Update the max_sum variable with the subarray sum if it is greater than the current max_sum.
- Return the max_sum variable as the result.
C++
#include<math.h> #include <iostream> #include <climits> using namespace std; int max_sum_subarray( int arr[], int n, int k) { int freq[101] = {0}; for ( int i = 0; i < n; i++) { freq[arr[i]]++; } int max_sum = INT_MIN; for ( int i = 0; i <= n-k; i++) { int subarray_sum = 0; for ( int j = i; j < i+k; j++) { subarray_sum += pow (arr[j], freq[arr[j]]); } max_sum = max(max_sum, subarray_sum); } return max_sum; } int main() { int arr[] = {4, 9, 6, 5}; int n = 4; int k = 3; cout << max_sum_subarray(arr, n, k) << endl; return 0; } |
Python3
def max_sum_subarray(arr, n, k): freq = {} for i in arr: freq[i] = freq.get(i, 0 ) + 1 max_sum = float ( '-inf' ) for i in range (n - k + 1 ): subarray = arr[i:i + k] subarray_sum = sum ([ pow (x, freq[x]) for x in subarray]) max_sum = max (max_sum, subarray_sum) return max_sum # EXAMPLE arr = [ 4 , 9 , 6 , 5 ] n = 4 k = 3 print (max_sum_subarray(arr, n, k)) # Output: 20 |
C#
using System; using System.Collections.Generic; class GFG { // Function to find the maximum sum of subarray of size // k public static int MaxSumSubarray( int [] arr, int n, int k) { // Initialize a dictionary to store the frequency of // each element Dictionary< int , int > freq = new Dictionary< int , int >(); foreach ( int i in arr) { if (freq.ContainsKey(i)) freq[i]++; else freq[i] = 1; } int maxSum = int .MinValue; for ( int i = 0; i <= n - k; i++) { // Create a subarray of size k int [] subarray = new int [k]; Array.Copy(arr, i, subarray, 0, k); int subarraySum = 0; // Calculate the sum of the frequency // powered elements in the subarray foreach ( int x in subarray) subarraySum += ( int )Math.Pow(x, freq[x]); // Update maxSum maxSum = Math.Max(maxSum, subarraySum); } return maxSum; } public static void Main( string [] args) { // EXAMPLE int [] arr = new int [] { 4, 9, 6, 5 }; int n = 4; int k = 3; Console.WriteLine(MaxSumSubarray(arr, n, k)); } } |
Javascript
function max_sum_subarray(arr, n, k) { let freq = Array(101).fill(0); for (let i = 0; i < n; i++) { freq[arr[i]]++; } let max_sum = Number.MIN_SAFE_INTEGER; for (let i = 0; i <= n-k; i++) { let subarray_sum = 0; for (let j = i; j < i+k; j++) { subarray_sum += Math.pow(arr[j], freq[arr[j]]); } max_sum = Math.max(max_sum, subarray_sum); } return max_sum; } let arr = [4, 9, 6, 5]; let n = 4; let k = 3; console.log(max_sum_subarray(arr, n, k)); |
Java
// Java program for the above approach import java.util.Arrays; public class Main { // Function to find the maximum // subarray sum public static int maxSumSubarray( int [] arr, int n, int k) { int [] freq = new int [ 101 ]; for ( int i = 0 ; i < n; i++) { freq[arr[i]]++; } // Stores the maximum sum int maxSum = Integer.MIN_VALUE; for ( int i = 0 ; i <= n - k; i++) { int subarraySum = 0 ; for ( int j = i; j < i + k; j++) { subarraySum += Math.pow(arr[j], freq[arr[j]]); } // Update the maximum sum maxSum = Math.max(maxSum, subarraySum); } // Return the maximum sum of subarray return maxSum; } // Driver Code public static void main(String[] args) { int [] arr = { 4 , 9 , 6 , 5 }; int n = 4 ; int k = 3 ; System.out.println(maxSumSubarray(arr, n, k)); } } |
20
Time complexity: O(n*k),
Auxiliary space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!