Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount unique stairs that can be reached by moving given number of...

Count unique stairs that can be reached by moving given number of steps forward or backward

Given an integer N, representing the number of stairs, valued from 1 to N, and a starting position S, the task is to count the maximum number of unique stairs that can be reached by moving exactly A or B stairs steps forward or backward from any position, any number of times.

Examples:

Input: N = 10, S = 2, A = 5, B = 7
Output: 4
Explanation:
Starting Position S: Stair 2
From Stair 2, it is possible to reach the stairs 7, i.e. ( S + A ), and 9, i.e. (S + B).
From Stair 9, it is possible to reach stair 4, i.e. ( S – A ).
Therefore, the unique number of stairs that can be reached is 4 {2, 4, 7, 9}.

Input: N = 10, S = 2, A = 3, B = 4
Output: 10

 

Approach: The given problem can be solved using BFS traversal technique. Follow the steps below to solve the problem:

  • Initialize a queue and an array vis[] of size (N + 1) and initialize it as false.
  • Mark the starting node S as visited i.e., vis[S] as 1. Push S into a queue Q.
  • Now iterate until Q is not empty and perform the following steps:
    • Pop the front element of the queue and store it in a variable, say currStair.
    • Consider all 4 possible types of moves from currStair, i.e. {+A, -A, +B, -B}.
    • For every new stair, check whether it is a valid and unvisited stair or not. If found to be true, then push it into Q. Mark the stair as visited. Otherwise, continue.
  • Finally, count the number of visited stairs using the array vis[].
  • After completing the above steps, print the count of visited stairs as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number
// of unique stairs visited
void countStairs(int n, int x, int a, int b)
{
    // Checks whether the current
    // stair is visited or not
    int vis[n + 1] = { 0 };
 
    // Store the possible moves
    // from the current position
    int moves[] = { +a, -a, +b, -b };
 
    // Initialize a queue
    queue<int> q;
 
    /// Push the starting position
    q.push(x);
 
    // Mark the starting
    // position S as visited
    vis[x] = 1;
 
    // Iterate until queue is not empty
    while (!q.empty()) {
 
        // Store the current stair number
        int currentStair = q.front();
 
        // Pop it from the queue
        q.pop();
 
        // Check for all possible moves
        // from the current stair
        for (int j = 0; j < 4; j++) {
 
            // Store the new stair number
            int newStair = currentStair + moves[j];
 
            // If it is valid and unvisited
            if (newStair > 0 && newStair <= n
                && !vis[newStair]) {
 
                // Push it into queue
                q.push(newStair);
 
                // Mark the stair as visited
                vis[newStair] = 1;
            }
        }
    }
 
    // Store the result
    int cnt = 0;
 
    // Count the all visited stairs
    for (int i = 1; i <= n; i++)
        if (vis[i] == 1)
            cnt++;
 
    // Print the result
    cout << cnt;
}
 
// Driver Code
int main()
{
    int N = 10, S = 2, A = 5, B = 7;
    countStairs(N, S, A, B);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.LinkedList;
import java.util.Queue;
 
class GFG{
 
// Function to count the number
// of unique stairs visited
static void countStairs(int n, int x, int a, int b)
{
     
    // Checks whether the current
    // stair is visited or not
    int[] vis = new int[n + 1];
 
    // Store the possible moves
    // from the current position
    int[] moves = { +a, -a, +b, -b };
 
    // Initialize a queue
    Queue<Integer> q = new LinkedList<Integer>();
 
    /// Push the starting position
    q.add(x);
 
    // Mark the starting
    // position S as visited
    vis[x] = 1;
 
    // Iterate until queue is not empty
    while (!q.isEmpty())
    {
         
        // Store the current stair number
        int currentStair = q.peek();
 
        // Pop it from the queue
        q.remove();
 
        // Check for all possible moves
        // from the current stair
        for(int j = 0; j < 4; j++)
        {
             
            // Store the new stair number
            int newStair = currentStair + moves[j];
 
            // If it is valid and unvisited
            if (newStair > 0 && newStair <= n &&
                            vis[newStair] == 0)
            {
                 
                // Push it into queue
                q.add(newStair);
 
                // Mark the stair as visited
                vis[newStair] = 1;
            }
        }
    }
 
    // Store the result
    int cnt = 0;
 
    // Count the all visited stairs
    for(int i = 1; i <= n; i++)
        if (vis[i] == 1)
            cnt++;
 
    // Print the result
    System.out.print(cnt);
}
 
// Driver Code
public static void main(String args[])
{
    int N = 10, S = 2, A = 5, B = 7;
 
    countStairs(N, S, A, B);
}
}
 
// This code is contributed by abhinavjain194


Python3




# Python3 program for the above approach
from collections import deque
 
# Function to count the number
# of unique stairs visited
def countStairs(n, x, a, b):
     
    # Checks whether the current
    # stair is visited or not
    vis = [0] * (n + 1)
 
    # Store the possible moves
    # from the current position
    moves = [+a, -a, +b, -b]
 
    # Initialize a queue
    q = deque()
 
    # Push the starting position
    q.append(x)
 
    # Mark the starting
    # position S as visited
    vis[x] = 1
 
    # Iterate until queue is not empty
    while (len(q) > 0):
 
        # Store the current stair number
        currentStair = q.popleft()
 
        # Pop it from the queue
        # q.pop()
 
        # Check for all possible moves
        # from the current stair
        for j in range(4):
 
            # Store the new stair number
            newStair = currentStair + moves[j]
 
            # If it is valid and unvisited
            if (newStair > 0 and newStair <= n and
               (not vis[newStair])):
                # Push it into queue
                q.append(newStair)
 
                # Mark the stair as visited
                vis[newStair] = 1
 
    # Store the result
    cnt = 0
 
    # Count the all visited stairs
    for i in range(1, n + 1):
        if (vis[i] == 1):
            cnt += 1
 
    # Print the result
    print (cnt)
 
# Driver Code
if __name__ == '__main__':
     
    N, S, A, B = 10, 2, 5, 7
     
    countStairs(N, S, A, B)
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
  
// Function to count the number
// of unique stairs visited
static void countStairs(int n, int x,
                        int a, int b)
{
     
    // Checks whether the current
    // stair is visited or not
    int []vis = new int[n + 1];
    Array.Clear(vis, 0, vis.Length);
 
    // Store the possible moves
    // from the current position
    int []moves = { +a, -a, +b, -b };
 
    // Initialize a queue
    Queue<int> q = new Queue<int>();
 
    /// Push the starting position
    q.Enqueue(x);
 
    // Mark the starting
    // position S as visited
    vis[x] = 1;
 
    // Iterate until queue is not empty
    while (q.Count > 0)
    {
         
        // Store the current stair number
        int currentStair = q.Peek();
 
        // Pop it from the queue
        q.Dequeue();
 
        // Check for all possible moves
        // from the current stair
        for(int j = 0; j < 4; j++)
        {
             
            // Store the new stair number
            int newStair = currentStair + moves[j];
 
            // If it is valid and unvisited
            if (newStair > 0 && newStair <= n &&
                            vis[newStair] == 0)
            {
                 
                // Push it into queue
                q.Enqueue(newStair);
 
                // Mark the stair as visited
                vis[newStair] = 1;
            }
        }
    }
 
    // Store the result
    int cnt = 0;
 
    // Count the all visited stairs
    for(int i = 1; i <= n; i++)
        if (vis[i] == 1)
            cnt++;
 
    // Print the result
    Console.WriteLine(cnt);
}
 
// Driver Code
public static void Main()
{
    int N = 10, S = 2, A = 5, B = 7;
     
    countStairs(N, S, A, B);
}
}
 
// This code is contributed by ipg2016107


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to count the number
// of unique stairs visited
function countStairs(n, x, a, b)
{
    // Checks whether the current
    // stair is visited or not
    var vis = Array(n+1).fill(0);
 
    // Store the possible moves
    // from the current position
    var moves = [ +a, -a, +b, -b ];
 
    // Initialize a queue
    var q = [];
 
    /// Push the starting position
    q.push(x);
 
    // Mark the starting
    // position S as visited
    vis[x] = 1;
 
    // Iterate until queue is not empty
    while (q.length!=0) {
 
        // Store the current stair number
        var currentStair = q[0];
 
        // Pop it from the queue
        q.shift();
 
        // Check for all possible moves
        // from the current stair
        for (var j = 0; j < 4; j++) {
 
            // Store the new stair number
            var newStair = currentStair + moves[j];
 
            // If it is valid and unvisited
            if (newStair > 0 && newStair <= n
                && !vis[newStair]) {
 
                // Push it into queue
                q.push(newStair);
 
                // Mark the stair as visited
                vis[newStair] = 1;
            }
        }
    }
 
    // Store the result
    var cnt = 0;
 
    // Count the all visited stairs
    for (var i = 1; i <= n; i++)
        if (vis[i] == 1)
            cnt++;
 
    // Print the result
    document.write( cnt);
}
 
// Driver Code
var N = 10, S = 2, A = 5, B = 7;
countStairs(N, S, A, B);
 
</script>


Output: 

4

 

Time Complexity: O(N)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments