Sunday, January 5, 2025
Google search engine
HomeData Modelling & AICheck whether the number can be made perfect square after adding K

Check whether the number can be made perfect square after adding K

Given two numbers N and K, the task is to check whether the given number N can be made a perfect square after adding K to it.
Examples: 

Input: N = 7, K = 2 
Output: Yes 
Explanation: 
7 + 2 = 9 which is a perfect square.

Input: N = 5, K = 3 
Output: No 
Explanation: 
5 + 3 = 8 which is not a perfect square. 

 

Approach: The idea is to compute the value of N + K and check if it is a perfect square or not. In order to check if a number is a perfect square or not, refer to this article.

Below is the implementation of the above approach: 

C++




// C++ program to check whether the number
// can be made perfect square after adding K
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check whether the number
// can be made perfect square after adding K
void isPerfectSquare(long long int x)
{
 
    // Computing the square root of
    // the number
    long double sr = round(sqrt(x));
 
    // Print Yes if the number
    // is a perfect square
    if (sr * sr == x)
        cout << "Yes";
    else
        cout << "No";
}
 
// Driver code
int main()
{
    int n = 7, k = 2;
    isPerfectSquare(n + k);
 
    return 0;
}


Java




// Java program to check whether the number
// can be made perfect square after adding K
import java.util.*;
 
class GFG
{
     
    // Function to check whether the number
    // can be made perfect square after adding K
    static void isPerfectSquare(int x)
    {
     
        // Computing the square root of
        // the number
        int sr = (int)Math.sqrt(x);
     
        // Print Yes if the number
        // is a perfect square
        if (sr * sr == x)
            System.out.println("Yes");
        else
            System.out.println("No");
    }
     
    // Driver code
    public static void main(String args[])
    {
        int n = 7, k = 2;
        isPerfectSquare(n + k);
     
    }
}
 
// This code is contributed by Yash_R


Python3




# Python3 program to check whether the number
# can be made perfect square after adding K
from math import sqrt
 
# Function to check whether the number
# can be made perfect square after adding K
def isPerfectSquare(x) :
 
    # Computing the square root of
    # the number
    sr = int(sqrt(x));
 
    # Print Yes if the number
    # is a perfect square
    if (sr * sr == x) :
        print("Yes");
    else :
        print("No");
 
# Driver code
if __name__ == "__main__" :
 
    n = 7; k = 2;
    isPerfectSquare(n + k);
 
# This code is contributed by Yash_R


C#




// C# program to check whether the number
// can be made perfect square after adding K
using System;
 
class GFG
{
     
    // Function to check whether the number
    // can be made perfect square after adding K
    static void isPerfectSquare(int x)
    {
     
        // Computing the square root of
        // the number
        int sr = (int)Math.Sqrt(x);
     
        // Print Yes if the number
        // is a perfect square
        if (sr * sr == x)
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
     
    // Driver code
    public static void Main(String []args)
    {
        int n = 7;
        int k = 2;
        isPerfectSquare(n + k);   
    }
}
 
// This code is contributed by Yash_R


Javascript




<script>
 
// Javascript program to check whether the number
// can be made perfect square after adding K
 
// Function to check whether the number
// can be made perfect square after adding K
function isPerfectSquare(x)
{
 
    // Computing the square root of
    // the number
    var sr = Math.round(Math.sqrt(x));
 
    // Print Yes if the number
    // is a perfect square
    if (sr * sr == x)
        document.write("Yes");
    else
        document.write("No");
}
 
// Driver code
var n = 7, k = 2;
isPerfectSquare(n + k);
 
</script>


Output: 

Yes

 

Time complexity: O(log(N)), where N is sum of given n and k.
Auxiliary space: O(1)

Note: Similar, it can be checked whether (N – K) can be a perfect square or not, by replacing ‘+’ with ‘-‘ sign in the above function.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments