Monday, December 30, 2024
Google search engine
HomeData Modelling & AICheck if a subsequence of length K with odd sum exists

Check if a subsequence of length K with odd sum exists

Given an array arr[] of integers, the task is to check if it is possible to obtain a subsequence of K elements from the array such that their sum is odd. If it is possible, print Yes. Otherwise, print No.
Examples: 
 

Input: arr[] = { 2, 5, 6, 7, 4 }, K = 3 
Output: Yes 
Explanation: 
Subsequences {2, 5, 6}, {2, 6, 7} and {2, 7, 4} have odd sum
Input: arr[] = { 1, 5, 7, 11 }, K = 4 
Output: No 
Explanation: 
Only subsequence of length 4 is {1, 5, 7, 11} which has even sum (24). Hence no such subsequence exists. 
 

 

Naive Approach: 
The simplest method to solve the problem is to generate all subsequences of length K and check if any of these subsequences have an odd sum. The time complexity for such an approach will be exponential and thus inefficient.
Efficient Approach: 
The efficient method to approach the above problem will be to count the number of odd elements in the array and then, simply checking for all the edge cases when it will not be possible to find a subsequence with odd sum. 
The edge cases to be considered when such a subsequence cannot be generated are as follows: 
 

  • If there are no odd elements in the array, any subsequence will contain only even elements and an even sum will be obtained. So, it is not possible to generate a subsequence with odd sum.
  • If K is even and there are no even elements present in the array, a subsequence with odd sum is not possible.

For all other cases, it will be possible to generate a subsequence with an odd sum.
Below is the implementation of above approach:
 

C++




// C++ program to check if a
// subsequence of length K
// with odd sum exists in the
// given array
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if any required
// subsequence exists or not
bool isSubseqPossible(int arr[], int N, int K)
{
    int i;
    // Store count of odd and
    // even elements in the array
    int odd = 0, even = 0;
 
    // Calculate the count of
    // odd and even elements
    for (i = 0; i < N; i++) {
        if (arr[i] % 2 == 1)
            odd++;
        else
            even++;
    }
 
    // If no odd elements exists
    // or no even elements exists
    // when K is even
    if (odd == 0
|| (even == 0 && K % 2 == 0))
 
        // Subsequence is not possible
        return false;
 
    // Possible otherwise
    return true;
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 3, 5, 7, 4 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = 3;
    cout << (isSubseqPossible(arr, N, K)
                 ? "Yes"
                 : "No");
    return 0;
}


Java




// Java program to check if a
// subsequence of length K
// with odd sum exists in the
// given array
class GFG{
 
// Function to check if any required
// subsequence exists or not
static boolean isSubseqPossible(int []arr,
                             int N, int K)
{
    int i;
     
    // Store count of odd and
    // even elements in the array
    int odd = 0, even = 0;
 
    // Calculate the count of
    // odd and even elements
    for (i = 0; i < N; i++)
    {
        if (arr[i] % 2 == 1)
            odd++;
        else
            even++;
    }
 
    // If no odd elements exists
    // or no even elements exists
    // when K is even
    if (odd == 0 || (even == 0 && K % 2 == 0))
 
        // Subsequence is not possible
        return false;
 
    // Possible otherwise
    return true;
}
 
// Driver Code
public static void main(String args[])
{
    int []arr = { 2, 3, 5, 7, 4 };
    int N = arr.length;
    int K = 3;
    System.out.print(isSubseqPossible(arr, N, K) ?
                                           "Yes" : "No");
}
}
 
// This code is contributed by Code_Mech


Python3




# Python3 program to check if a subsequence
# of length K with odd sum exists in the
# given array
 
# Function to check if any required
# subsequence exists or not
def isSubseqPossible(arr, N, K):
 
    i = 0
     
    # Store count of odd and
    # even elements in the array
    odd = 0
    even = 0
 
    # Calculate the count of
    # odd and even elements
    for i in range(N):
        if (arr[i] % 2 == 1):
            odd += 1
        else:
            even += 1
 
    # If no odd element exists or no
    # even element exists when K even
    if (odd == 0 or (even == 0 and K % 2 == 0)):
 
        # Subsequence is not possible
        return False
 
    # Otherwise possible
    return True
 
# Driver code
if __name__ == '__main__':
 
    arr = [ 2, 3, 5, 7, 4 ]
    N = len(arr)
    K = 3
 
    print("Yes" if isSubseqPossible(arr, N, K) else "No")
 
# This code is contributed by himanshu77


C#




// C# program to check if a
// subsequence of length K
// with odd sum exists in the
// given array
using System;
class GFG{
 
// Function to check if any required
// subsequence exists or not
static bool isSubseqPossible(int []arr,
                             int N, int K)
{
    int i;
     
    // Store count of odd and
    // even elements in the array
    int odd = 0, even = 0;
 
    // Calculate the count of
    // odd and even elements
    for (i = 0; i < N; i++)
    {
        if (arr[i] % 2 == 1)
            odd++;
        else
            even++;
    }
 
    // If no odd elements exists
    // or no even elements exists
    // when K is even
    if (odd == 0 || (even == 0 && K % 2 == 0))
 
        // Subsequence is not possible
        return false;
 
    // Possible otherwise
    return true;
}
 
// Driver Code
public static void Main()
{
    int []arr = { 2, 3, 5, 7, 4 };
    int N = arr.Length;
    int K = 3;
    Console.Write(isSubseqPossible(arr, N, K) ?
                                        "Yes" : "No");
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
 
// JavaScript program to check if a
// subsequence of length K
// with odd sum exists in the
// given array
 
// Function to check if any required
// subsequence exists or not
function isSubseqPossible(arr, N, K)
{
    let i;
       
    // Store count of odd and
    // even elements in the array
    let odd = 0, even = 0;
   
    // Calculate the count of
    // odd and even elements
    for (i = 0; i < N; i++)
    {
        if (arr[i] % 2 == 1)
            odd++;
        else
            even++;
    }
   
    // If no odd elements exists
    // or no even elements exists
    // when K is even
    if (odd == 0 || (even == 0 && K % 2 == 0))
   
        // Subsequence is not possible
        return false;
   
    // Possible otherwise
    return true;
}
   
     
// Driver Code
 
    let arr = [ 2, 3, 5, 7, 4 ];
    let N = arr.length;
    let K = 3;
    document.write(isSubseqPossible(arr, N, K) ?
                                     "Yes" : "No");
           
</script>


Output

Yes




Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Approach#2: Using itertools combinations()

The approach used in this code is to generate all possible subsequences of length K using the itertools.combinations() function and check if any subsequence has an odd sum.

Algorithm

1. Use the itertools.combinations() function to generate all possible subsequences of length K from the input array.
2. Loop through each subsequence and check if its sum is odd using the sum() function and the modulo operator.
3. If a subsequence with an odd sum is found, return “Yes”.
4. If no subsequence with an odd sum is found, return “No”.

C++




#include <iostream>
#include <vector>
using namespace std;
 
string subsequenceWithOddSum(vector<int>& arr, int K) {
    int n = arr.size();
    for (int mask = 0; mask < (1 << n); mask++) {
        int sum = 0; // Initialize the sum for the current subsequence
        int count = 0; // Initialize the count for the current subsequence
        for (int i = 0; i < n; i++) {
            if ((mask & (1 << i)) != 0) {
                // If the i-th element is included in the current subsequence
                // (according to the mask)
                sum += arr[i]; // Add the element to the sum
                count++; // Increment the count of elements in the current subsequence
            }
        }
        if (count == K && sum % 2 == 1) {
            // If the length of the current subsequence is K and the sum is odd
            return "Yes"; // Return "Yes"
        }
    }
    return "No"; // If no such subsequence is found, return "No"
}
 
int main() {
    vector<int> arr = {1, 5, 7, 11};
    int K = 4;
    cout << subsequenceWithOddSum(arr, K) << endl;
    return 0;
}


Java




import java.util.*;
 
public class SubsequenceWithOddSum {
    public static String subsequenceWithOddSum(int[] arr, int K) {
        int n = arr.length;
        for (int mask = 0; mask < (1 << n); mask++) {
            int sum = 0; // Initialize the sum for the current subsequence
            int count = 0; // Initialize the count for the current subsequence
            for (int i = 0; i < n; i++) {
                if ((mask & (1 << i)) != 0) {
                    // If the i-th element is included in the current subsequence (according to the mask)
                    sum += arr[i]; // Add the element to the sum
                    count++; // Increment the count of elements in the current subsequence
                }
            }
            if (count == K && sum % 2 == 1) {
                // If the length of the current subsequence is K and the sum is odd
                return "Yes"; // Return "Yes"
            }
        }
        return "No"; // If no such subsequence is found, return "No"
    }
 
    public static void main(String[] args) {
        int[] arr = {1, 5, 7, 11};
        int K = 4;
        System.out.println(subsequenceWithOddSum(arr, K));
    }
}


Python3




import itertools
 
def subsequence_with_odd_sum(arr, K):
    for sub in itertools.combinations(arr, K):
        if sum(sub) % 2 == 1:
            return "Yes"
    return "No"
 
# Example usage
arr = [1, 5, 7, 11]
K = 4
print(subsequence_with_odd_sum(arr, K))
# Output: Yes


Output

No





Time Complexity: O(n^K), where n is the length of the input array. This is because the algorithm generates all possible subsequences of length K, which can be as many as n^K.

Space Complexity: O(K), which is the maximum size of the subsequence stored at any given time. This is because the algorithm only stores one subsequence at a time while checking its sum.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments