Given a range represented by two positive integers L and R. The task is to count the numbers from the range having GCD of powers of prime factors equal to 1. In other words, if a number X has its prime factorization of the form 2p1 * 3p2 * 5p3 * … then the GCD of p1, p2, p3, … should be equal to 1.
Examples:
Input: L = 2, R = 5
Output: 3 2, 3, and 5 are the required numbers having GCD of powers of prime factors equal to 1. 2 = 21 3 = 31 5 = 51Input: L = 13, R = 20
Output: 7
Prerequisites: Perfect Powers in a Range
Naive Approach: Iterate over all numbers from L to R and prime factorise each number then calculate the GCD of powers of the prime factors. If the GCD = 1, increment a count variable and finally return it as the answer.
Efficient Approach: The key idea here is to notice that the valid numbers are not perfect powers since the powers of prime factors number are in such a way that their GCD is always greater than 1. In other words, all perfect powers are not valid numbers.
For e.g.
2500 is perfect power whose prime factorization is 2500 = 22 * 54. Now the GCD of (2, 4) = 2 which is greater than 1. If some number has xth power of a factor in its prime factorization, then the powers of other prime factors will have to be multiples of x in order for the number to be invalid.
Hence, we can find the total number of perfect powers lying in the range and subtract it from the total numbers. Below is the implementation of the above approach:
CPP
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define N 1000005 #define MAX 1e18 // Vector to store powers greater than 3 vector< long int > powers; // Set to store perfect squares set< long int > squares; // Set to store powers other than perfect squares set< long int > s; void powersPrecomputation() { for ( long int i = 2; i < N; i++) { // Pushing squares squares.insert(i * i); // if the values is already a perfect square means // present in the set if (squares.find(i) != squares.end()) continue ; long int temp = i; // Run loop until some power of current number // doesn't exceed MAX while (i * i <= MAX / temp) { temp *= (i * i); // Pushing only odd powers as even power of a number // can always be expressed as a perfect square // which is already present in set squares s.insert(temp); } } // Inserting those sorted // values of set into a vector for ( auto x : s) powers.push_back(x); } long int calculateAnswer( long int L, long int R) { // Precompute the powers powersPrecomputation(); // Calculate perfect squares in // range using sqrtl function long int perfectSquares = floor (sqrtl(R)) - floor (sqrtl(L - 1)); // Calculate upper value of R // in vector using binary search long int high = upper_bound(powers.begin(), powers.end(), R) - powers.begin(); // Calculate lower value of L // in vector using binary search long int low = lower_bound(powers.begin(), powers.end(), L) - powers.begin(); // Calculate perfect powers long perfectPowers = perfectSquares + (high - low); // Compute final answer long ans = (R - L + 1) - perfectPowers; return ans; } // Driver Code int main() { long int L = 13, R = 20; cout << calculateAnswer(L, R); return 0; } |
Java
// Java implementation of above idea import java.util.*; class GFG { static int N = 1000005 ; static long MAX = ( long ) 1e18; // Vector to store powers greater than 3 static Vector<Long> powers = new Vector<>(); // Set to store perfect squares static TreeSet<Long> squares = new TreeSet<>(); // Set to store powers other than perfect squares static TreeSet<Long> s = new TreeSet<>(); static void powersPrecomputation() { for ( long i = 2 ; i < N; i++) { // Pushing squares squares.add(i * i); // if the values is already a perfect square means // present in the set if (squares.contains(i)) continue ; long temp = i; // Run loop until some power of current number // doesn't exceed MAX while (i * i <= MAX / temp) { temp *= (i * i); // Pushing only odd powers as even power of a number // can always be expressed as a perfect square // which is already present in set squares s.add(temp); } } // Inserting those sorted // values of set into a vector for ( long x : s) powers.add(x); } static long calculateAnswer( long L, long R) { // Precompute the powers powersPrecomputation(); // Calculate perfect squares in // range using sqrtl function long perfectSquares = ( long ) (Math.floor(Math.sqrt(R)) - Math.floor(Math.sqrt(L - 1 ))); // Calculate upper value of R // in vector using binary search long high = Collections.binarySearch(powers, R); // Calculate lower value of L // in vector using binary search long low = Collections.binarySearch(powers, L); // Calculate perfect powers long perfectPowers = perfectSquares + (high - low); // Compute final answer long ans = (R - L + 1 ) - perfectPowers; return ans; } // Driver Code public static void main(String[] args) { long L = 13 , R = 20 ; System.out.println(calculateAnswer(L, R)); } } // This code is contributed by // sanjeev2552 |
Python3
# Python3 implementation of the approach from bisect import bisect as upper_bound from bisect import bisect_left as lower_bound from math import floor N = 1000005 MAX = 10 * * 18 # Vector to store powers greater than 3 powers = [] # Set to store perfect squares squares = dict () # Set to store powers other than perfect squares s = dict () def powersPrecomputation(): for i in range ( 2 , N): # Pushing squares squares[i * i] = 1 # if the values is already a perfect square means # present in the set if (i not in squares.keys()): continue temp = i # Run loop until some power of current number # doesn't exceed MAX while (i * i < = ( MAX / / temp)): temp * = (i * i) # Pushing only odd powers as even power of a number # can always be expressed as a perfect square # which is already present in set squares s[temp] = 1 # Inserting those sorted # values of set into a vector for x in s: powers.append(x) def calculateAnswer(L, R): # Precompute the powers powersPrecomputation() # Calculate perfect squares in # range using sqrtl function perfectSquares = floor((R) * * (. 5 )) - floor((L - 1 ) * * (. 5 )) # Calculate upper value of R # in vector using binary search high = upper_bound(powers,R) # Calculate lower value of L # in vector using binary search low = lower_bound(powers,L) # Calculate perfect powers perfectPowers = perfectSquares + (high - low) # Compute final answer ans = (R - L + 1 ) - perfectPowers return ans # Driver Code L = 13 R = 20 print (calculateAnswer(L, R)) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of above idea using System; using System.Collections.Generic; public class GFG { static int N = 100005; static long MAX = ( long ) 1e18; // List to store powers greater than 3 static List< long > powers = new List< long >(); // Set to store perfect squares static HashSet< long > squares = new HashSet< long >(); // Set to store powers other than perfect squares static HashSet< long > s = new HashSet< long >(); static void powersPrecomputation() { for ( long i = 2; i < N; i++) { // Pushing squares squares.Add(i * i); // if the values is already a perfect square means // present in the set if (squares.Contains(i)) continue ; long temp = i; // Run loop until some power of current number // doesn't exceed MAX while (i * i <= MAX / temp) { temp *= (i * i); // Pushing only odd powers as even power of a number // can always be expressed as a perfect square // which is already present in set squares s.Add(temp); } } // Inserting those sorted // values of set into a vector foreach ( long x in s) powers.Add(x); } static long calculateAnswer( long L, long R) { // Precompute the powers powersPrecomputation(); // Calculate perfect squares in // range using sqrtl function long perfectSquares = ( long ) (Math.Floor(Math.Sqrt(R)) - Math.Floor(Math.Sqrt(L - 1))); // Calculate upper value of R // in vector using binary search long high = Array.BinarySearch(powers.ToArray(), R); // Calculate lower value of L // in vector using binary search long low = Array.BinarySearch(powers.ToArray(), L); // Calculate perfect powers long perfectPowers = perfectSquares + (high - low); // Compute readonly answer long ans = (R - L + 1) - perfectPowers; return ans; } // Driver Code public static void Main(String[] args) { long L = 13, R = 20; Console.WriteLine(calculateAnswer(L, R)); } } // This code is contributed by 29AjayKumar |
Javascript
// JavaScript implementation of the approach let N = 1000005; let MAX = 1e18; // Vector to store powers greater than 3 let powers = []; // Set to store perfect squares let squares = new Set(); // Set to store powers other than perfect squares let s = new Set(); function upper_bound(arr, value) { for (let i = 0; i < arr.length; i++) { if (arr[i] > value) return i; } return arr.length; } function lower_bound(arr, value) { for (let i = 0; i < arr.length; i++) { if (arr[i] >= value) return i; } return arr.length; } function powersPrecomputation() { for (let i = 2; i < N; i++) { // Pushing squares squares.add(i * i); // if the values is already a perfect square means // present in the set if (squares.has(i)) continue ; let temp = i; // Run loop until some power of current number // doesn't exceed MAX while (i * i <= MAX / temp) { temp *= (i * i); // Pushing only odd powers as even power of a number // can always be expressed as a perfect square // which is already present in set squares s.add(temp); } } // Inserting those sorted // values of set into a vector for (let x of s) powers.push(x); } function calculateAnswer(L, R) { // Precompute the powers powersPrecomputation(); // Calculate perfect squares in // range using sqrtl function let perfectSquares = Math.floor(Math.sqrt(R)) - Math.floor(Math.sqrt(L - 1)); // Calculate upper value of R // in vector using binary search let high = upper_bound(powers, R); // Calculate lower value of L // in vector using binary search let low = lower_bound(powers, L); // Calculate perfect powers let perfectPowers = perfectSquares + (high - low); // Compute final answer let ans = (R - L + 1) - perfectPowers; return ans; } // Driver Code let L = 13, R = 20; console.log(calculateAnswer(L, R)); // This code is contributed by phasing17 |
7
Time Complexity: O(N * log N), to iterate over N
Auxiliary Space: O(N), since N extra space has been taken.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!