Tuesday, November 26, 2024
Google search engine
HomeData Modelling & AICheck if Nodes in Top view of a Binary Tree forms a...

Check if Nodes in Top view of a Binary Tree forms a Palindrome Number or not

Given a binary tree consisting of N nodes, the task is to check if the nodes in the top view of a Binary Tree forms a palindrome number or not. If found to be a palindrome, then print “Yes”. Otherwise, print “No”.

Examples:

Input:
                5
               / \
             3   3 
           / \    \
         6   2    6
Output: Yes
Explanation:
Nodes in the top view are {6, 3, 5, 3, 6}. Hence, the generated number ( = 63536) is a palindrome.

Input:
                1
               / \
             4   2 
Output: No

Approach: To solve the given problem, the idea is to find the top view of the given Binary Tree using the approach discussed in this article and store it in an array, say arr[]. Now, check if the array arr[] is palindrome or not. If found to be true, then print Yes otherwise print No.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Structure of the node
// of a Binary Tree
struct Node {
    Node* left;
    Node* right;
    int hd;
    int data;
};
 
// Function to create a new node
Node* newNode(int key)
{
    Node* node = new Node();
    node->left = node->right = NULL;
    node->data = key;
    return node;
}
 
// Function to check if array
// is a palindrome or not
void isPalindrome(vector<int> arr)
{
    // Store the size of arr[]
    int n = arr.size();
 
    // Initialise flag to 0
    int flag = 0;
 
    // Iterate till half the array length
    for (int i = 0; i <= n / 2
                    && n != 0;
         i++) {
 
        // If the first and last
        // array elements are different
        if (arr[i] != arr[n - i - 1]) {
            flag = 1;
            break;
        }
    }
 
    // If flag is set, then print No
    if (flag == 1)
        cout << "No";
    else
        cout << "Yes";
}
 
// Function to find the top view
// of the given Binary Tree
void topview(Node* root)
{
    // Base Case
    if (root == NULL)
        return;
 
    // Stores the nodes while
    // performing tree traversal
    queue<Node*> q;
 
    map<int, int> m;
 
    int hd = 0;
    root->hd = hd;
 
    // Push node and horizontal
    // distance into the queue
    q.push(root);
 
    while (q.size()) {
 
        hd = root->hd;
 
        if (m.count(hd) == 0)
            m[hd] = root->data;
 
        // If root's left child exists
        if (root->left) {
            root->left->hd = hd - 1;
            q.push(root->left);
        }
 
        // If root's right child exists
        if (root->right) {
            root->right->hd = hd + 1;
            q.push(root->right);
        }
        q.pop();
        root = q.front();
    }
 
    // Store the top view in a vector
    vector<int> v;
 
    // Traverse the map
    for (auto i = m.begin();
         i != m.end(); i++) {
 
        // Insert the element in v
        v.push_back(i->second);
    }
 
    // Function call to check if
    // vector v is palindromic or not
    isPalindrome(v);
}
 
// Driver Code
int main()
{
    // Binary Tree Formation
    Node* root = newNode(5);
    root->left = newNode(3);
    root->right = newNode(3);
    root->left->left = newNode(6);
    root->left->right = newNode(2);
    root->right->right = newNode(6);
 
    topview(root);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Structure of the node
// of a Binary Tree
static class Node
{
    Node left;
    Node right;
    int hd;
    int data;
};
 
// Function to create a new node
static Node newNode(int key)
{
    Node node = new Node();
    node.left = node.right = null;
    node.data = key;
    return node;
}
 
// Function to check if array
// is a palindrome or not
static void isPalindrome(Vector<Integer> arr)
{
     
    // Store the size of arr[]
    int n = arr.size();
 
    // Initialise flag to 0
    int flag = 0;
 
    // Iterate till half the array length
    for(int i = 0; i <= n / 2 && n != 0; i++)
    {
         
        // If the first and last
        // array elements are different
        if (arr.get(i) != arr.get(n - i - 1))
        {
            flag = 1;
            break;
        }
    }
 
    // If flag is set, then print No
    if (flag == 1)
        System.out.print("No");
    else
        System.out.print("Yes");
}
 
// Function to find the top view
// of the given Binary Tree
static void topview(Node root)
{
     
    // Base Case
    if (root == null)
        return;
 
    // Stores the nodes while
    // performing tree traversal
    Queue<Node> q = new LinkedList<>();
 
    HashMap<Integer, Integer> m = new HashMap<>();
 
    int hd = 0;
    root.hd = hd;
 
    // Push node and horizontal
    // distance into the queue
    q.add(root);
 
    while (q.size() > 0)
    {
        hd = root.hd;
 
        if (m.containsKey(hd) && m.get(hd) == 0)
            m.put(hd, root.data);
 
        // If root's left child exists
        if (root.left != null)
        {
            root.left.hd = hd - 1;
            q.add(root.left);
        }
 
        // If root's right child exists
        if (root.right != null)
        {
            root.right.hd = hd + 1;
            q.add(root.right);
        }
        q.remove();
        root = q.peek();
    }
 
    // Store the top view in a vector
    Vector<Integer> v = new Vector<Integer>();
 
    // Traverse the map
    for(Map.Entry<Integer,Integer> i : m.entrySet())
    {
         
        // Insert the element in v
        v.add(i.getValue());
    }
     
    // Function call to check if
    // vector v is palindromic or not
    isPalindrome(v);
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Binary Tree Formation
    Node root = newNode(5);
    root.left = newNode(3);
    root.right = newNode(3);
    root.left.left = newNode(6);
    root.left.right = newNode(2);
    root.right.right = newNode(6);
 
    topview(root);
}
}
 
// This code is contributed by shikhasingrajput


Python3




# Python3 program for the above approach
 
# Structure of the node
# of a Binary Tree
class newNode:
   
    # Construct to create a newNode
    def __init__(self, key):
        self.data = key
        self.left = None
        self.right = None
        self.hd = 0
 
# Function to check if array
# is a palindrome or not
def isPalindrome(arr):
   
    # Store the size of arr[]
    n = len(arr)
     
    # Initialise flag to 0
    flag = 0
     
    # Iterate till half the array length
    i = 0
    while i <= n // 2 and n != 0:
       
        # If the first and last
        # array elements are different
        if (arr[i] != arr[n - i - 1]):
            flag = 1
            break
        i += 1
         
    # If flag is set, then print No
    if (flag == 1):
        print("No")
    else:
        print("Yes")
 
# Function to find the top view
# of the given Binary Tree
def topview(root):
   
    # Base case
    if(root == None) :
        return
    q = []
    m = dict()
    hd = 0
    root.hd = hd
     
    # push node and horizontal
    # distance to queue
    q.append(root)
    while(len(q)) :
        root = q[0]
        hd = root.hd
         
        # count function returns 1 if the
        # container contains an element
        # whose key is equivalent to hd,
        # or returns zero otherwise.
        if hd not in m:
            m[hd] = root.data
        if(root.left) :        
            root.left.hd = hd - 1
            q.append(root.left)
         
        if(root.right):        
            root.right.hd = hd + 1
            q.append(root.right)
         
        q.pop(0)
     
    v = []
     
    # Traverse the map
    for i in sorted(m):
       
        # Insert the element in v
        v.append(m[i])
 
    # Function call to check if
    # vector v is palindromic or not
     
    isPalindrome(v)
 
# Driver Code
 
# Binary Tree Formation
root = newNode(5)
root.left = newNode(3)
root.right = newNode(3)
root.left.left = newNode(6)
root.left.right = newNode(2)
root.right.right = newNode(6)
 
topview(root)
 
# This code is contributed by rohitsingh07052.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG{
 
  // Structure of the node
  // of a Binary Tree
  class Node
  {
    public Node left;
    public Node right;
    public int hd;
    public int data;
  };
 
  // Function to create a new node
  static Node newNode(int key)
  {
    Node node = new Node();
    node.left = node.right = null;
    node.data = key;
    return node;
  }
 
  // Function to check if array
  // is a palindrome or not
  static void isPalindrome(List<int> arr)
  {
 
    // Store the size of []arr
    int n = arr.Count;
 
    // Initialise flag to 0
    int flag = 0;
 
    // Iterate till half the array length
    for(int i = 0; i <= n / 2 && n != 0; i++)
    {
 
      // If the first and last
      // array elements are different
      if (arr[i] != arr[n - i - 1])
      {
        flag = 1;
        break;
      }
    }
 
    // If flag is set, then print No
    if (flag == 1)
      Console.Write("No");
    else
      Console.Write("Yes");
  }
 
  // Function to find the top view
  // of the given Binary Tree
  static void topview(Node root)
  {
 
    // Base Case
    if (root == null)
      return;
 
    // Stores the nodes while
    // performing tree traversal
    Queue<Node> q = new Queue<Node>();
 
    Dictionary<int, int> m = new Dictionary<int, int>();
 
    int hd = 0;
    root.hd = hd;
 
    // Push node and horizontal
    // distance into the queue
    q.Enqueue(root);
 
    while (q.Count > 0)
    {
      hd = root.hd;
 
      if (m.ContainsKey(hd) && m[hd] == 0)
        m[hd] = root.data;
 
      // If root's left child exists
      if (root.left != null)
      {
        root.left.hd = hd - 1;
        q.Enqueue(root.left);
      }
 
      // If root's right child exists
      if (root.right != null)
      {
        root.right.hd = hd + 1;
        q.Enqueue(root.right);
      }
 
      root = q.Peek();
      q.Dequeue();
    }
 
    // Store the top view in a vector
    List<int> v = new List<int>();
 
    // Traverse the map
    foreach(KeyValuePair<int,int> i in m)
    {
 
      // Insert the element in v
      v.Add(i.Value);
    }
 
    // Function call to check if
    // vector v is palindromic or not
    isPalindrome(v);
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
 
    // Binary Tree Formation
    Node root = newNode(5);
    root.left = newNode(3);
    root.right = newNode(3);
    root.left.left = newNode(6);
    root.left.right = newNode(2);
    root.right.right = newNode(6);
 
    topview(root);
  }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
    // JavaScript program for the above approach
     
    class Node
    {
        constructor(key) {
           this.left = null;
           this.right = null;
           this.data = key;
        }
    }
     
    // Function to create a new node
    function newNode(key)
    {
        let node = new Node(key);
        return node;
    }
 
    // Function to check if array
    // is a palindrome or not
    function isPalindrome(arr)
    {
 
        // Store the size of arr[]
        let n = arr.length;
 
        // Initialise flag to 0
        let flag = 0;
 
        // Iterate till half the array length
        for(let i = 0; i <= parseInt(n / 2, 10) && n != 0; i++)
        {
 
            // If the first and last
            // array elements are different
            if (arr[i] != arr[n - i - 1])
            {
                flag = 1;
                break;
            }
        }
 
        // If flag is set, then print No
        if (flag == 1)
            document.write("No");
        else
            document.write("Yes");
    }
 
    // Function to find the top view
    // of the given Binary Tree
    function topview(root)
    {
 
        // Base Case
        if (root == null)
            return;
 
        // Stores the nodes while
        // performing tree traversal
        let q = [];
 
        let m = new Map();
 
        let hd = 0;
        root.hd = hd;
 
        // Push node and horizontal
        // distance into the queue
        q.push(root);
 
        while (q.length > 0)
        {
            hd = root.hd;
 
            if (m.has(hd) && m.get(hd) == 0)
                m.set(hd, root.data);
 
            // If root's left child exists
            if (root.left != null)
            {
                root.left.hd = hd - 1;
                q.push(root.left);
            }
 
            // If root's right child exists
            if (root.right != null)
            {
                root.right.hd = hd + 1;
                q.push(root.right);
            }
            q.shift();
            root = q[0];
        }
 
        // Store the top view in a vector
        let v = [];
 
        // Traverse the map
        m.forEach((values,keys)=>{
 
            // Insert the element in v
            v.push(values);
        })
 
        // Function call to check if
        // vector v is palindromic or not
        isPalindrome(v);
    }
     
    // Binary Tree Formation
    let root = newNode(5);
    root.left = newNode(3);
    root.right = newNode(3);
    root.left.left = newNode(6);
    root.left.right = newNode(2);
    root.right.right = newNode(6);
  
    topview(root);
     
</script>


Output: 

Yes

 

Time Complexity: O(NlogN), where n is the number of nodes in the binary tree.
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments