Sunday, November 17, 2024
Google search engine
HomeData Modelling & AIMaximum previous and next element product

Maximum previous and next element product

Given an array of integers, Task is to print the Maximum Product among the array such that its previous and next element product is maximum. 

Note: Array can be considered in the cyclic order. The previous element of the first element would be equal to the last element and the next element for the last element would be the first element.
 

Examples:

Input : a[ ] = { 5, 6, 4, 3, 2} 
Output : 20 

For 5 :previous element is 2 and next element is 6 so, product will be 12. 
For 6 :previous element is 5 and next element is 4 so, product will be 20. 
For 4 :previous element is 6 and next element is 3 so, product will be 18. 
For 3 :previous element is 4 and next element is 2 so, product will be 8. 
For 2 :previous element is 3 and next element is 5 so, product will be 15. 

maximum possible product is 20 
and maximum element in an array is 6.
 

Input : a[ ] = {9, 2, 3, 1, 5, 17} 
Output : 45 

Approach:  

  • Idea is to firstly find previous element and next element.
  • After finding both element, take the product and find the maximum product among them.

Below is the implementation of the above approach: 

C++




// C++ program to print maximum product
// such that its previous and next
// element product is maximum
 
#include <bits/stdc++.h>
 
using namespace std;
 
// function to return largest element
// such that its previous and next
// element product is maximum.
int maxProduct(int a[], int n)
{
 
    int product[n];
 
    int maxA[n];
    int maxProd = 0;
    int maxArr = 0;
    for (int i = 0; i < n; i++) {
 
        // product of previous and next
        // element and stored into an
        // array product[i]
        product[i] = a[(i + 1) % n] * a[(i + (n - 1)) % n];
 
        // find maximum product
        // in product[i] array
        if (maxProd < product[i]) {
            maxProd = product[i];
        }
    }
    return maxProd;
}
 
// Driver program
int main()
{
    int a[] = { 5, 6, 4, 3, 2 };
 
    int n = sizeof(a) / sizeof(a[0]);
 
    cout << (maxProduct(a, n));
}
 
// This code contributed by Rajput-Ji


Java




// Java program to print maximum product
// such that its previous and next
// element product is maximum.
import java.io.*;
 
class GFG
{
    // function to return largest element
    // such that its previous and next
    // element product is maximum.
    static int maxProduct(int a[], int n)
    {
 
        int[] product = new int[n];
 
        int maxA[] = new int[n];
 
        int maxProd = 0;
        int maxArr = 0;
        for (int i = 0; i < n; i++)
        {
 
            // product of previous and next
            // element and stored into an
            // array product[i]
            product[i] = a[(i + 1) % n] *
                        a[(i + (n - 1)) % n];
 
            // find maximum product
            // in product[i] array
            if (maxProd < product[i])
            {
                maxProd = product[i];
            }
        }
        return maxProd;
    }
 
    // Driver code
    public static void main(String[] args)
 
    {
        int[] a = { 5, 6, 4, 3, 2 };
 
        int n = a.length;
 
        System.out.println(maxProduct(a, n));
    }
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 program to print maximum product
# such that its previous and next
# element product is maximum.
 
# function to return largest element
# such that its previous and next
# element product is maximum.
def maxProduct(a, n) :
 
    product = [0]*n;
    maxA = [0]*n;
    maxProd = 0;
    maxArr = 0;
 
    for i in range(n) :
         
        # product of previous and next
        # element and stored into an
        # array product[i]
        product[i] = a[(i + 1) % n] * a[(i + (n - 1)) % n];
     
        # find maximum product
        # in product[i] array
        if (maxProd < product[i]) :
            maxProd = product[i];
             
    return maxProd;
 
 
# Driver code
if __name__ == "__main__" :
     
    a = [ 5, 6, 4, 3, 2 ];
    n = len(a);
     
    print(maxProduct(a, n));
     
# This code is contributed by AnkitRai01


C#




// C# program to print maximum product
// such that its previous and next
// element product is maximum.
using System;
 
class GFG
{
    // function to return largest element
    // such that its previous and next
    // element product is maximum.
    static int maxProduct(int []a, int n)
    {
 
        int[] product = new int[n];
 
        //int []maxA = new int[n];
 
         int maxProd = 0;
        //int maxArr = 0;
        for (int i = 0; i < n; i++)
        {
 
            // product of previous and next
            // element and stored into an
            // array product[i]
            product[i] = a[(i + 1) % n] *
                        a[(i + (n - 1)) % n];
 
            // find maximum product
            // in product[i] array
            if (maxProd < product[i])
            {
                maxProd = product[i];
            }
        }
        return maxProd;
    }
 
    // Driver code
    public static void Main()
 
    {
        int[] a = { 5, 6, 4, 3, 2 };
 
        int n = a.Length;
 
        Console.WriteLine(maxProduct(a, n));
    }
}
 
// This code is contributed by anuj_67..


Javascript




<script>
    // Javascript program to print maximum product
    // such that its previous and next
    // element product is maximum.
     
    // function to return largest element
    // such that its previous and next
    // element product is maximum.
    function maxProduct(a, n)
    {
   
        let product = new Array(n);
   
        //int []maxA = new int[n];
   
        let maxProd = 0;
        //int maxArr = 0;
        for (let i = 0; i < n; i++)
        {
   
            // product of previous and next
            // element and stored into an
            // array product[i]
            product[i] = a[(i + 1) % n] *
                        a[(i + (n - 1)) % n];
   
            // find maximum product
            // in product[i] array
            if (maxProd < product[i])
            {
                maxProd = product[i];
            }
        }
        return maxProd;
    }
     
    let a = [ 5, 6, 4, 3, 2 ];
   
    let n = a.length;
 
    document.write(maxProduct(a, n));
 
</script>


Output: 

20

 

Time Complexity : O(N) where N is size of given array

Auxiliary space: O(N) because it is using extra space for arrays product and maxA

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments