Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIC++ Program to Inplace rotate square matrix by 90 degrees | Set...

C++ Program to Inplace rotate square matrix by 90 degrees | Set 1

Given a square matrix, turn it by 90 degrees in anti-clockwise direction without using any extra space.
Examples : 
 

Input:
Matrix:
 1  2  3
 4  5  6
 7  8  9
Output:
 3  6  9 
 2  5  8 
 1  4  7 
The given matrix is rotated by 90 degree 
in anti-clockwise direction.

Input:
 1  2  3  4 
 5  6  7  8 
 9 10 11 12 
13 14 15 16 
Output:
 4  8 12 16 
 3  7 11 15 
 2  6 10 14 
 1  5  9 13
The given matrix is rotated by 90 degree 
in anti-clockwise direction.

 

An approach that requires extra space is already discussed here.
Approach: To solve the question without any extra space, rotate the array in form of squares, dividing the matrix into squares or cycles. For example, 
A 4 X 4 matrix will have 2 cycles. The first cycle is formed by its 1st row, last column, last row and 1st column. The second cycle is formed by 2nd row, second-last column, second-last row and 2nd column. The idea is for each square cycle, swap the elements involved with the corresponding cell in the matrix in anti-clockwise direction i.e. from top to left, left to bottom, bottom to right and from right to top one at a time using nothing but a temporary variable to achieve this.
Demonstration: 
 

First Cycle (Involves Red Elements)
 1  2  3 4 
 5  6  7 8 
 9 10 11 12 
 13 14 15 16 

Moving first group of four elements (First
elements of 1st row, last row, 1st column 
and last column) of first cycle in counter
clockwise. 
 4  2  3 16
 5  6  7 8 
 9 10 11 12 
 1 14  15 13 
 
Moving next group of four elements of 
first cycle in counter clockwise 
 4  8  3 16 
 5  6  7  15  
 2  10 11 12 
 1  14  9 13 

Moving final group of four elements of 
first cycle in counter clockwise 
 4  8 12 16 
 3  6  7 15 
 2 10 11 14 
 1  5  9 13 


Second Cycle (Involves Blue Elements)
 4  8 12 16 
 3  6 7  15 
 2  10 11 14 
 1  5  9 13 

Fixing second cycle
 4  8 12 16 
 3  7 11 15 
 2  6 10 14 
 1  5  9 13

Algorithm: 
 

  1. There is N/2 squares or cycles in a matrix of side N. Process a square one at a time. Run a loop to traverse the matrix a cycle at a time, i.e loop from 0 to N/2 – 1, loop counter is i
  2. Consider elements in group of 4 in current square, rotate the 4 elements at a time. So the number of such groups in a cycle is N – 2*i.
  3. So run a loop in each cycle from x to N – x – 1, loop counter is y
  4. The elements in the current group is (x, y), (y, N-1-x), (N-1-x, N-1-y), (N-1-y, x), now rotate the these 4 elements, i.e (x, y) <- (y, N-1-x), (y, N-1-x)<- (N-1-x, N-1-y), (N-1-x, N-1-y)<- (N-1-y, x), (N-1-y, x)<- (x, y)
  5. Print the matrix.

 

C++




// C++ program to rotate a matrix
// by 90 degrees
#include <bits/stdc++.h>
#define N 4
using namespace std;
  
void displayMatrix(
    int mat[N][N]);
  
// An Inplace function to
// rotate a N x N matrix
// by 90 degrees in
// anti-clockwise direction
void rotateMatrix(int mat[][N])
{
    // Consider all squares one by one
    for (int x = 0; x < N / 2; x++) {
        // Consider elements in group
        // of 4 in current square
        for (int y = x; y < N - x - 1; y++) {
            // Store current cell in
            // temp variable
            int temp = mat[x][y];
  
            // Move values from right to top
            mat[x][y] = mat[y][N - 1 - x];
  
            // Move values from bottom to right
            mat[y][N - 1 - x]
                = mat[N - 1 - x][N - 1 - y];
  
            // Move values from left to bottom
            mat[N - 1 - x][N - 1 - y]
                = mat[N - 1 - y][x];
  
            // Assign temp to left
            mat[N - 1 - y][x] = temp;
        }
    }
}
  
// Function to print the matrix
void displayMatrix(int mat[N][N])
{
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++)
            printf("%2d ", mat[i][j]);
  
        printf("
");
    }
    printf("
");
}
  
/* Driver program to test above functions */
int main()
{
    // Test Case 1
    int mat[N][N] = {
        { 1, 2, 3, 4 },
        { 5, 6, 7, 8 },
        { 9, 10, 11, 12 },
        { 13, 14, 15, 16 }
    };
  
    // Tese Case 2
    /* int mat[N][N] = {
                        {1, 2, 3},
                        {4, 5, 6},
                        {7, 8, 9}
                    };
     */
  
    // Tese Case 3
    /*int mat[N][N] = {
                    {1, 2},
                    {4, 5}
                };*/
  
    // displayMatrix(mat);
  
    rotateMatrix(mat);
  
    // Print rotated matrix
    displayMatrix(mat);
  
    return 0;
}


Output : 
 

 4  8 12 16 
 3  7 11 15 
 2  6 10 14 
 1  5  9 13 

Complexity Analysis: 
 

  • Time Complexity: O(n*n), where n is side of array. 
    A single traversal of the matrix is needed.
  • Space Complexity: O(1). 
    As a constant space is needed

Please refer complete article on Inplace rotate square matrix by 90 degrees | Set 1 for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments