Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIFind a permutation of N natural numbers with K inversions

Find a permutation of N natural numbers with K inversions

Given two integers N and K, the task is to find a permutation of first N natural numbers with exactly K inversions.

Examples : 

Input: N = 5, K = 4
Output: 5 1 2 3 4 
Explanation: In the above permutation P, the pairs (i, j) such that i < j and P[i] > P[j] are (0, 1), (0, 2), (0, 3), and (0, 4). Hence, the number of inversions in the above permutation is 4 which is the required value.

Input: N = 3, K = 4
Output: -1
Explanation: No possible permutation of first 3 natural numbers has exactly 4 inversions.               

 

Approach: The given problem can be solved by a Greedy Approach. It can be observed that if the maximum element of an array of N elements is assigned at ith position, it will contribute (N – i) inversions. Using this observation, follow the below steps to solve the given problem:

  • Check for the condition whether K > the maximum number of possible inversions (i.e, N*(N-1)/2). If true, return -1.
  • Create a variable curr, which keeps track of the current maximum element of the array. Initially curr = N.
  • Create an array p[], which keeps track of the current permutation.
  • Iterate using a variable i in the range [1, N], and if K > (curr – i), assign curr to the current position of the array and subtract (curr – i) from K. Also, decrement the value of curr by 1.
  • If K > (curr – i) is false, assign K+1 to the current index and assign the remaining integers in increasing order in the array p[].

Below is the implementation of the above approach: 

C++




// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the permutation of
// N natural numbers with k inversions
void findPermutation(int n, int k)
{
    // Stores the maximum number of inversions
    int max_inv = (n * (n - 1)) / 2;
 
    // If required inversions are more that max
    if (k > max_inv) {
        cout << "-1";
        return;
    }
 
    // Stores the final permutation
    int p[n + 1];
 
    // Keep track of the current max element
    // in the permutation
    int curr = n;
    int i = 1;
 
    // Loop to iterate through the array
    for (i = 1; i <= n; i++) {
 
        // Set current element as ith element
        // in order to increase n-i inversions
        // in the given permutation
        if (k >= n - i) {
            p[i] = curr;
            curr--;
            k -= (n - i);
        }
 
        // Otherwise set (k+1) element at ith index
        // ans assign the remaining indices
        else {
            // If the remaining inversion count is
            // greater than 0
            if (k == 0) {
                i--;
            }
            else {
                p[i] = k + 1;
            }
 
            // Set the next index as 1
            p[i + 1] = 1;
 
            // Loop to assign the remaining indices
            for (int j = i + 2; j <= n; j++) {
                p[j] = p[j - 1] + 1;
 
                // If current element already occurred
                if (p[i] == p[j]) {
                    p[j]++;
                }
            }
            break;
        }
    }
 
    // Print Answer
    for (int j = 1; j <= n; j++) {
        cout << p[j] << " ";
    }
}
 
// Driver code
int main()
{
    int n = 5;
    int k = 4;
 
    findPermutation(n, k);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG {
   
// Function to find the permutation of
// N natural numbers with k inversions
static void findPermutation(int n, int k)
{
   
    // Stores the maximum number of inversions
    int max_inv = (n * (n - 1)) / 2;
 
    // If required inversions are more that max
    if (k > max_inv) {
         System.out.println("-1");
        return;
    }
 
    // Stores the final permutation
    int [] p = new int[n+1];
 
    // Keep track of the current max element
    // in the permutation
    int curr = n;
    int i = 1;
 
    // Loop to iterate through the array
    for (i = 1; i <= n; i++) {
 
        // Set current element as ith element
        // in order to increase n-i inversions
        // in the given permutation
        if (k >= n - i) {
            p[i] = curr;
            curr--;
            k -= (n - i);
        }
 
        // Otherwise set (k+1) element at ith index
        // ans assign the remaining indices
        else {
            // If the remaining inversion count is
            // greater than 0
            if (k == 0) {
                i--;
            }
            else {
                p[i] = k + 1;
            }
 
            // Set the next index as 1
            p[i + 1] = 1;
 
            // Loop to assign the remaining indices
            for (int j = i + 2; j <= n; j++) {
                p[j] = p[j - 1] + 1;
 
                // If current element already occurred
                if (p[i] == p[j]) {
                    p[j]++;
                }
            }
            break;
        }
    }
 
    // Print Answer
    for (int j = 1; j <= n; j++) {
         System.out.print(p[j] + " ");
    }
}
 
// Driver code
    public static void main (String[] args) {
       int n = 5;
    int k = 4;
 
    findPermutation(n, k);
    }
}
 
// This code is contributed by Potta Lokesh


Python3




# python program of the above approach
 
# Function to find the permutation of
# N natural numbers with k inversions
def findPermutation(n, k):
 
    # Stores the maximum number of inversions
    max_inv = (n * (n - 1)) / 2
 
    # If required inversions are more that max
    if (k > max_inv):
        print("-1")
        return
 
    # Stores the final permutation
    p = [0 for _ in range(n + 1)]
 
    # Keep track of the current max element
    # in the permutation
    curr = n
    i = 1
 
    # Loop to iterate through the array
    for i in range(1, n+1):
 
        # Set current element as ith element
        # in order to increase n-i inversions
        # in the given permutation
        if (k >= n - i):
            p[i] = curr
            curr -= 1
            k -= (n - i)
 
        # Otherwise set (k+1) element at ith index
        # ans assign the remaining indices
        else:
            # If the remaining inversion count is
            # greater than 0
            if (k == 0):
                i -= 1
 
            else:
                p[i] = k + 1
 
            # Set the next index as 1
            p[i + 1] = 1
 
            # Loop to assign the remaining indices
            for j in range(i+2, n+1):
                p[j] = p[j - 1] + 1
 
                # If current element already occurred
                if (p[i] == p[j]):
                    p[j] += 1
 
            break
 
    # Print Answer
    for j in range(1, n+1):
        print(p[j], end=" ")
 
 
# Driver code
if __name__ == "__main__":
 
    n = 5
    k = 4
 
    findPermutation(n, k)
 
# This code is contributed by rakeshsahni


Javascript




<script>
    // JavaScript program of the above approach
 
    // Function to find the permutation of
    // N natural numbers with k inversions
    const findPermutation = (n, k) => {
     
        // Stores the maximum number of inversions
        let max_inv = (n * (n - 1)) / 2;
 
        // If required inversions are more that max
        if (k > max_inv) {
            document.write("-1");
            return;
        }
 
        // Stores the final permutation
        let p = new Array(n + 1).fill(0);
 
        // Keep track of the current max element
        // in the permutation
        let curr = n;
        let i = 1;
 
        // Loop to iterate through the array
        for (i = 1; i <= n; i++) {
 
            // Set current element as ith element
            // in order to increase n-i inversions
            // in the given permutation
            if (k >= n - i) {
                p[i] = curr;
                curr--;
                k -= (n - i);
            }
 
            // Otherwise set (k+1) element at ith index
            // ans assign the remaining indices
            else {
                // If the remaining inversion count is
                // greater than 0
                if (k == 0) {
                    i--;
                }
                else {
                    p[i] = k + 1;
                }
 
                // Set the next index as 1
                p[i + 1] = 1;
 
                // Loop to assign the remaining indices
                for (let j = i + 2; j <= n; j++) {
                    p[j] = p[j - 1] + 1;
 
                    // If current element already occurred
                    if (p[i] == p[j]) {
                        p[j]++;
                    }
                }
                break;
            }
        }
 
        // Print Answer
        for (let j = 1; j <= n; j++) {
            document.write(`${p[j]} `);
        }
    }
 
    // Driver code
 
    let n = 5;
    let k = 4;
 
    findPermutation(n, k);
 
    // This code is contributed by rakeshsahni
 
</script>


C#




// C# program for the above approach
using System;
 
public class GFG {
   
// Function to find the permutation of
// N natural numbers with k inversions
static void findPermutation(int n, int k)
{
   
    // Stores the maximum number of inversions
    int max_inv = (n * (n - 1)) / 2;
 
    // If required inversions are more that max
    if (k > max_inv) {
         Console.WriteLine("-1");
        return;
    }
 
    // Stores the final permutation
    int [] p = new int[n+1];
 
    // Keep track of the current max element
    // in the permutation
    int curr = n;
    int i = 1;
 
    // Loop to iterate through the array
    for (i = 1; i <= n; i++) {
 
        // Set current element as ith element
        // in order to increase n-i inversions
        // in the given permutation
        if (k >= n - i) {
            p[i] = curr;
            curr--;
            k -= (n - i);
        }
 
        // Otherwise set (k+1) element at ith index
        // ans assign the remaining indices
        else {
            // If the remaining inversion count is
            // greater than 0
            if (k == 0) {
                i--;
            }
            else {
                p[i] = k + 1;
            }
 
            // Set the next index as 1
            p[i + 1] = 1;
 
            // Loop to assign the remaining indices
            for (int j = i + 2; j <= n; j++) {
                p[j] = p[j - 1] + 1;
 
                // If current element already occurred
                if (p[i] == p[j]) {
                    p[j]++;
                }
            }
            break;
        }
    }
 
    // Print Answer
    for (int j = 1; j <= n; j++) {
         Console.Write(p[j] + " ");
    }
}
 
// Driver code
    public static void Main (string[] args) {
       int n = 5;
       int k = 4;
 
    findPermutation(n, k);
    }
}
 
// This code is contributed by AnkThon


Output

5 1 2 3 4 

Time complexity: O(N) 
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments