Thursday, January 16, 2025
Google search engine
HomeData Modelling & AIMaximize the value of F(N) = max( N, F(N /2) + F(N...

Maximize the value of F(N) = max( N, F(N /2) + F(N / 3) + F(N / 4)) for any given integer

Given an integer N, the task is to find the maximum value of function F(n) given by F(N) = max(N, F(N /2) + F(N / 3) + F(N / 4)).

Examples:

Input: N = 3
Output: 3
Explanation:
F(3) = max(3, F(1) + F(1) + F(0)) as F(0) = 0 and F(1) = 1
F(3) = max(3, 1 + 1+ 0)
F(3) = max(3, 2)
Hence, the maximum value of F(3) is 3.

Input: N = 12
Output:13
Explanation:
F(12) = max(12, F(6) + F(4) + F(3))
F(6) = max(6, F(3) + F(2) + F(1)) 
F(3) = max(3, F(1) + F(1) + F(0)) as F(0) = 0 and F(1) = 1
F(3) = max(3, 1 + 1+ 0)
F(3) = max(3, 2) = 3
F(2) = max(2, F(1) + F(0) + F(0)) 
F(2) = max(2,1 + 0 + 0) = 2
F(4) = max(4, F(2) + F(1) + F(1)) 
F(4) = max(4, 2 + 1 + 1) = 4 
F(6) = max(6, 3 + 2 + 1) = 6
Now, F(12) = max(12, 6 + 4 + 3)
F(12) = max(12, 13)
Hence, the maximum value of F(12) is 13.

Naive Approach: The simplest approach is to use recursion to calculate the value of F(N). In each step, call three recursive calls for each of the values N/2, N/3, and N/4, and then each recursive call returns the value of the maximum of N and the sum of values returned by these recursive calls. After all, the recursive call ends print the value as the result.

Time Complexity: O(3N)
Auxiliary Space: O(1)

Dynamic Programming using Bottom-Down Approach: The recursive calls in the above can also be reduced using an auxiliary array dp[] and calculate the value of each state in the bottom-up approach. Below are the steps:

  • Create an auxiliary array dp[] of size N.
  • Initialize the state 0 and 1 as dp[0] = 0 and dp[1] = 1.
  • Traverse the array dp[] over the range [2, N] and update each state as:

dp[i] = max(i, dp[i/2] + dp[i/3] + dp[i/4])

  • Print the value of dp[N] after the above steps as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to build the auxiliary DP
// array from the start
void build(int dp[], int N)
{
    // Base Case
    dp[0] = 0;
    dp[1] = 1;
  
// Iterate over the range
    for (int i = 2; i <= N; i++) {
      
    // Update each state
        dp[i] = max(i, dp[i / 2] 
                    + dp[i / 3] 
                    + dp[i / 4]);
    }
}
  
// Function to find the maximum value of
// F(n) = max(n, F[n/2] + F[n/3] + F[n/4])
int maxValue(int N)
{
    // Auxuliary DP array
    int dp[N + 1];
  
    // Function call to build DP array
    build(dp, N);
  
    // Print the answer
    cout << dp[N];
}
  
// Driver Code
int main()
{
    // Given N
    int N = 12;
  
    // Function Call
    maxValue(N);
  
    return 0;
}


Java




// Java program for the above approach
import java.util.*; 
  
class GFG{
        
// Function to build the auxiliary DP
// array from the start
static void build(int dp[], int N)
{
      
    // Base Case
    dp[0] = 0;
    dp[1] = 1;
      
    // Iterate over the range
    for(int i = 2; i <= N; i++) 
    {
          
        // Update each state
        dp[i] = Math.max(i, dp[i / 2] + 
                            dp[i / 3] + 
                            dp[i / 4]);
    }
}
   
// Function to find the maximum value of
// F(n) = max(n, F[n/2] + F[n/3] + F[n/4])
static void maxValue(int N)
{
      
    // Auxuliary DP array
    int dp[] = new int[N + 1];
   
    // Function call to build DP array
    build(dp, N);
   
    // Print the answer
    System.out.println(dp[N]);
}
    
// Driver code
public static void main(String[] args)
{
      
    // Given N
    int N = 12;
   
    // Function Call
    maxValue(N);
}
}
   
// This code is contributed by code_hunt


Python3




# Python3 program for the above approach
  
# Function to build the auxiliary DP
# array from the start
def build(dp, N):
      
    # Base Case
    dp[0] = 0
    dp[1] = 1
      
    # Iterate over the range
    for i in range(2, N + 1):
          
        # Update each state
        dp[i] = max(i, dp[i // 2] +
                    dp[i // 3] +
                    dp[i // 4])
  
# Function to find the maximum value of
# F(n) = max(n, F[n/2] + F[n/3] + F[n/4])
def maxValue(N):
      
    # Auxuliary DP array
    dp = [0] * (N + 1)
  
    # Function call to build DP array
    build(dp, N)
  
    # Print the answer
    print(dp[N], end = "")
  
# Driver Code
if __name__ == '__main__':
      
    # Given N
    N = 12
      
    # Function Call
    maxValue(N)
  
# This code is contributed by mohit kumar 29


C#




// C# program for the 
// above approach
using System;
class GFG{
        
// Function to build the 
// auxiliary DP array 
// from the start
static void build(int []dp, 
                  int N)
{    
  // Base Case
  dp[0] = 0;
  dp[1] = 1;
  
  // Iterate over the range
  for(int i = 2; i <= N; i++) 
  {
    // Update each state
    dp[i] = Math.Max(i, dp[i / 2] + 
                     dp[i / 3] + 
                     dp[i / 4]);
  }
}
   
// Function to find the 
// maximum value of F(n) = 
// max(n, F[n/2] + F[n/3] + F[n/4])
static void maxValue(int N)
{    
  // Auxuliary DP array
  int []dp = new int[N + 1];
  
  // Function call to 
  // build DP array
  build(dp, N);
  
  // Print the answer
  Console.WriteLine(dp[N]);
}
    
// Driver code
public static void Main(String[] args)
{    
  // Given N
  int N = 12;
  
  // Function Call
  maxValue(N);
}
}
  
// This code is contributed by Rajput-Ji


Javascript




<script>
  
// javascript program for the
// above approach
  
         
// Function to build the
// auxiliary DP array
// from the start
  
function build( dp,  N)
{   
  // Base Case
    
  dp[0] = 0;
  dp[1] = 1;
   
  // Iterate over the range
  for(var i = 2; i <= N; i++)
  {
   // Update each state
   dp[i] = Math.max(i, dp[(Math.floor(i / 2))]  + dp[(Math.floor(i / 3))] + 
                                              dp[(Math.floor(i / 4))]);
  }
}
    
// Function to find the
// maximum value of F(n) =
// max(n, F[n/2] + F[n/3] + F[n/4])
  
function maxValue( N)
{   
  // Auxuliary DP array
  var dp = [] ;
   
  // Function call to
  // build DP array
    
  build(dp, N);
   
  // Print the answer
  document.write(dp[N]);
}
     
// Driver code
     
  // Given N
  var N = 12;
   
  // Function Call
  maxValue(N);
    
</script>


Output

13

Time Complexity: O(N)
Space Complexity: O(N)

Dynamic Programming using Top-Down Approach: As in the above approach there are many Overlapping Subproblems for each recursive call. Therefore, to optimize the above approach, the idea is to use the auxiliary space map to store the value calculated in each recursive call and return the recurring stored state. Below are the steps:

  • Initialize a map Map to store the value calculated at each recursive call.
  • Base Case: If the value of N is 0 or 1 then the result is 0 and 1 respectively. Also, if there is any previously calculated state then return that value as:

>Base Case:
if(N <= 1) {
     return N;
}
Memoized State:
if(Map.find(N) != Map.end()) {
     return Map[N];
}

  • Recursive Call: If the base case is not met, then find the value of the current state by recursively calling for each state as:

result = max(N, recursive_function(N/2) + recursive_function(N/3) + recursive_function(N/4))

  • Return Statement: At each recursive call(except the base case), store the current state calculated in the above step in the map and return the value calculated as the result for the current state.

Map[N] = result;
return result;

  • After the above steps, print the value return to the end of all the recursive calls.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Map used for memoization
map<int, int> mp;
  
// Function to find maximum value
// of the given recurrence relation
int maxValue(int N)
{
    // Base Case
    if (N <= 1)
        return N;
  
    // If previously computed
    if (mp[N] != 0)
        return mp[N];
  
    // Computing value of function
    // when its not already computed
    int ans = max(N, maxValue(N / 2) 
                + maxValue(N / 3)
                + maxValue(N / 4));
  
    // Storing value for further
    // computation reduction
    mp[N] = ans;
  
    return ans;
}
  
// Utility function to find maximum value
// of the given recurrence relation
void maxValueUtil(int N)
{
    // Stores final result
    int result = maxValue(N);
  
    // Print the result
    cout << result;
}
  
// Drive Code
int main()
{
    // Given N
    int N = 12;
  
    // Function Call
    maxValueUtil(N);
  
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
import java.lang.*;
  
class GFG{
      
// Map used for memoization
static Map<Integer, Integer> mp = new HashMap<>();
   
// Function to find maximum value
// of the given recurrence relation
static int maxValue(int N)
{
      
    // Base Case
    if (N <= 1)
        return N;
   
    // If previously computed
    if (mp.containsKey(N))
        return mp.get(N);
   
    // Computing value of function
    // when its not already computed
    int ans = Math.max(N, maxValue(N / 2) +
                          maxValue(N / 3) +
                          maxValue(N / 4));
   
    // Storing value for further
    // computation reduction
    mp.put(N, ans);
   
    return ans;
}
   
// Utility function to find maximum value
// of the given recurrence relation
static void maxValueUtil(int N)
{
      
    // Stores final result
    int result = maxValue(N);
   
    // Print the result
    System.out.print(result);
}
  
// Driver code
public static void main (String[] args) 
{
  
    // Given N
    int N = 12;
      
    // Function Call
    maxValueUtil(N);
}
}
  
// This code is contributed by offbeat


Python3




# Python3 program for the above approach
  
# Map used for memoization
mp = {}
  
# Function to find maximum value
# of the given recurrence relation
def maxValue(N):
    
    # Base Case
    if (N <= 1):
        return N
  
    # If previously computed
    if (N in mp):
        return mp[N]
  
    # Computing value of function
    # when its not already computed
    ans = (max(N, maxValue(N // 2) + 
                  maxValue(N // 3) +
                  maxValue(N // 4)))
  
    # Storing value for further
    # computation reduction
    if(N in mp):
      mp[N] = ans
    else:
      mp[N] = mp.get(N, 0) + ans
  
    return ans
  
# Utility function to find maximum value
# of the given recurrence relation
def maxValueUtil(N):
    
    # Stores final result
    result = maxValue(N)
  
    # Print the result
    print(result)
  
# Drive Code
if __name__ == '__main__':
    
    # Given N
    N = 12
  
    # Function Call
    maxValueUtil(N)
  
# This code is contributed by SURENDRA_GANGWAR


C#




// C# program for the
// above approach
using System;
using System.Collections.Generic;
class GFG{
      
// Map used for memoization
static Dictionary<int
                  int> mp = new Dictionary<int
                                           int>();
    
// Function to find maximum value
// of the given recurrence relation
static int maxValue(int N)
{    
  // Base Case
  if (N <= 1)
    return N;
  
  // If previously computed
  if (mp.ContainsKey(N))
    return mp[N];
  
  // Computing value of function
  // when its not already computed
  int ans = Math.Max(N, maxValue(N / 2) +
                     maxValue(N / 3) +
                     maxValue(N / 4));
  
  // Storing value for further
  // computation reduction
  mp.Add(N, ans);
  
  return ans;
}
   
// Utility function to find 
// maximum value of the given 
// recurrence relation
static void maxValueUtil(int N)
{    
  // Stores readonly result
  int result = maxValue(N);
  
  // Print the result
  Console.Write(result);
}
  
// Driver code
public static void Main(String[] args) 
{
  // Given N
  int N = 12;
  
  // Function Call
  maxValueUtil(N);
}
}
  
// This code is contributed by Princi Singh


Javascript




<script>
// C++ program for the above approach
  
// Map used for memoization
let mp= new Map;
  
// Function to find maximum value
// of the given recurrence relation
function maxValue( N)
{
    // Base Case
    if (N <= 1)
        return N;
  
    // If previously computed
    if (mp[N])
        return mp[N];
  
    // Computing value of function
    // when its not already computed
    let ans = Math.max(N, maxValue(Math.floor(N / 2) )
                + maxValue(Math.floor(N / 3))
                + maxValue(Math.floor(N / 4)));
  
    // Storing value for further
    // computation reduction
    mp[N] = ans;
  
    return ans;
}
  
// Utility function to find maximum value
// of the given recurrence relation
function maxValueUtil( N)
{
    // Stores final result
    let result = maxValue(N);
  
    // Print the result
    document.write(result);
}
  
// Drive Code
    // Given N
    let N = 12;
    // Function Call
    maxValueUtil(N);
  
</script>


Output

13

Time Complexity: O(log N)
Auxiliary Space: O(log N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments