Friday, January 10, 2025
Google search engine
HomeData Modelling & AILargest value of x such that axx is N-digit number of base...

Largest value of x such that axx is N-digit number of base b

Given the integers a, b, N, the task is to find the largest number x such that a*x^{x}      is an N-digit number of base b.

Examples:  

Input: a = 2, b = 10, N = 2 
Output:
Explanation: 
Here 2 * 33 = 54, which has the number of digits = 2, 
but 2 * 44 = 512 which has a number of digits = 3, which is not equal to N. 
Therefore, the largest value of x is 2.

Input: a = 1, b = 2, N = 3 
Output:
Explanation: 
1 * 22 = 4 whose binary representation is 100 and it has 3 digits.  

Approach: This problem can be solved using binary search

  • The number of digits of ax^x      in base b      is \lceil\log_b{ax^x}\rceil    .
  • Binary search is used to find the largest x      such that the number of digits of ax^x      in base b      is exactly n    .
  • In binary search, we will check the number of digits ax^x    , where x = mid    , and change the pointer according to that. 
    \lceil\log_b{ax^x}\rceil = \lceil x*\log_b{x}+\log_b{a} \rceil

Below is the implementation of the above approach:

C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find log_b(a)
double log(int a, int b)
{
    return log10(a) / log10(b);
}
 
int get(int a, int b, int n)
{
 
    // Set two pointer for binary search
    int lo = 0, hi = 1e6;
 
    int ans = 0;
 
    while (lo <= hi) {
        int mid = (lo + hi) / 2;
 
        // Calculating number of digits
        // of a*mid^mid in base b
        int dig = ceil((mid * log(mid, b)
                        + log(a, b)));
 
        if (dig > n) {
 
            // If number of digits > n
            // we can simply ignore it
            // and decrease our pointer
            hi = mid - 1;
        }
        else {
 
            // if number of digits <= n,
            // we can go higher to
            // reach value exactly equal to n
            ans = mid;
            lo = mid + 1;
        }
    }
 
    // return the largest value of x
    return ans;
}
 
// Driver Code
int main()
{
 
    int a = 2, b = 2, n = 6;
 
    cout << get(a, b, n)
         << "\n";
 
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
 
class GFG{
 
// Function to find log_b(a)
static int log(int a, int b)
{
    return (int)(Math.log10(a) /
                 Math.log10(b));
}
 
static int get(int a, int b, int n)
{
 
    // Set two pointer for binary search
    int lo = 0, hi = (int) 1e6;
 
    int ans = 0;
 
    while (lo <= hi)
    {
        int mid = (lo + hi) / 2;
 
        // Calculating number of digits
        // of a*mid^mid in base b
        int dig = (int) Math.ceil((mid * log(mid, b) +
                                         log(a, b)));
 
        if (dig > n)
        {
 
            // If number of digits > n
            // we can simply ignore it
            // and decrease our pointer
            hi = mid - 1;
        }
        else
        {
 
            // If number of digits <= n,
            // we can go higher to reach
            // value exactly equal to n
            ans = mid;
            lo = mid + 1;
        }
    }
 
    // Return the largest value of x
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int a = 2, b = 2, n = 6;
 
    System.out.print(get(a, b, n) + "\n");
}
}
 
// This code is contributed by amal kumar choubey


Python3




# Python3 implementation of the above approach
 
from math import log10,ceil,log
 
# Function to find log_b(a)
def log1(a,b):
    return log10(a)//log10(b)
 
def get(a,b,n):
    # Set two pointer for binary search
    lo = 0
    hi = 1e6
 
    ans = 0
 
    while (lo <= hi):
        mid = (lo + hi) // 2
 
        # Calculating number of digits
        # of a*mid^mid in base b
        dig = ceil((mid * log(mid, b) + log(a, b)))
 
        if (dig > n):
            # If number of digits > n
            # we can simply ignore it
            # and decrease our pointer
            hi = mid - 1
 
        else:
            # if number of digits <= n,
            # we can go higher to
            # reach value exactly equal to n
            ans = mid
            lo = mid + 1
 
    # return the largest value of x
    return ans
 
# Driver Code
if __name__ == '__main__':
    a = 2
    b = 2
    n = 6
 
    print(int(get(a, b, n)))
 
# This code is contributed by Surendra_Gangwar


C#




// C# implementation of the above approach
using System;
class GFG{
 
// Function to find log_b(a)
static int log(int a, int b)
{
    return (int)(Math.Log10(a) /
                 Math.Log10(b));
}
 
static int get(int a, int b, int n)
{
 
    // Set two pointer for binary search
    int lo = 0, hi = (int) 1e6;
 
    int ans = 0;
 
    while (lo <= hi)
    {
        int mid = (lo + hi) / 2;
 
        // Calculating number of digits
        // of a*mid^mid in base b
        int dig = (int)Math.Ceiling((double)(mid *
                                         log(mid, b) +
                                         log(a, b)));
 
        if (dig > n)
        {
 
            // If number of digits > n
            // we can simply ignore it
            // and decrease our pointer
            hi = mid - 1;
        }
        else
        {
 
            // If number of digits <= n,
            // we can go higher to reach
            // value exactly equal to n
            ans = mid;
            lo = mid + 1;
        }
    }
 
    // Return the largest value of x
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    int a = 2, b = 2, n = 6;
 
    Console.Write(get(a, b, n) + "\n");
}
}
 
// This code is contributed by amal kumar choubey


Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to find log_b(a)
function log(a, b)
{
    return (Math.log10(a) /
                 Math.log10(b));
}
   
function get(a, b, n)
{
   
    // Set two pointer for binary search
    let lo = 0, hi = 1e6;
   
    let ans = 0;
   
    while (lo <= hi)
    {
        let mid = Math.floor((lo + hi) / 2);
   
        // Calculating number of digits
        // of a*mid^mid in base b
        let dig =  Math.ceil((mid * log(mid, b) +
                                         log(a, b)));
   
        if (dig > n)
        {
   
            // If number of digits > n
            // we can simply ignore it
            // and decrease our pointer
            hi = mid - 1;
        }
        else
        {
   
            // If number of digits <= n,
            // we can go higher to reach
            // value exactly equal to n
            ans = mid;
            lo = mid + 1;
        }
    }
   
    // Return the largest value of x
    return ans;
}
// Driver Code
     
    let a = 2, b = 2, n = 6;
   
    document.write(get(a, b, n) + "\n");
                       
</script>


Output: 

3

 

Time Complexity: O(log(k)) where k=1e6.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments