Nesbitt’s inequality is one of the simplest inequalities in mathematics. According to the statement of the inequality, for any 3 given real numbers, they satisfy the mathematical condition,
for all
Illustrative Examples:
The 3 numbers satisfying Nesbitts inequality are real numbers.
For a = 1, b = 2, c = 3,
the condition of the inequality
{1 / (2 + 3)} + {2 / (1 + 3)} + {3 / (1 + 2)} >= 1.5 holds true.For a = 1.5, b = 5.6, c = 4.9,
the condition of the inequality
{1.5 / (5.6 + 4.9)} + {5.6 / (1.5 + 4.9)} + {4.9 / (1.5 + 5.6)} >= 1.5 holds true.For a = 4, b = 6, c = 7,
the condition of the inequality
{4 / (6 + 7)} + {6 / (4 + 7)} + {7 / (4 + 6)} >= 1.5 holds true.For a = 459, b = 62, c = 783,
the condition of the inequality
{459 / (62 + 783)} + {62 / (459 + 783)} + {783 / (459 + 62)} >= 1.5 holds true.For a = 9, b = 6, c = 83,
the condition of the inequality
{9 / (6 + 83)} + {6 / (9 + 83)} + {83 / (9 + 6)} >= 1.5 holds true.
C++
// C++ code to verify Nesbitt's Inequality #include <bits/stdc++.h> using namespace std; bool isValidNesbitt( double a, double b, double c) { // 3 parts of the inequality sum double A = a / (b + c); double B = b / (a + c); double C = c / (a + b); double inequality = A + B + C; return (inequality >= 1.5); } int main() { double a = 1.0, b = 2.0, c = 3.0; if (isValidNesbitt(a, b, c)) cout << "Nesbitt's inequality satisfied." << "for real numbers " << a << ", " << b << ", " << c << "\n" ; else cout << "Not satisfied" ; return 0; } |
Java
// Java code to verify Nesbitt's Inequality class GFG { static boolean isValidNesbitt( double a, double b, double c) { // 3 parts of the inequality sum double A = a / (b + c); double B = b / (a + c); double C = c / (a + b); double inequality = A + B + C; return (inequality >= 1.5 ); } // Driver code public static void main(String args[]) { double a = 1.0 , b = 2.0 , c = 3.0 ; if (isValidNesbitt(a, b, c) == true ) { System.out.print( "Nesbitt's inequality" + " satisfied." ); System.out.println( "for real numbers " + a + ", " + b + ", " + c); } else System.out.println( "Nesbitts inequality" + " not satisfied" ); } } // This code is contributed by JaideepPyne. |
Python3
# Python3 code to verify # Nesbitt's Inequality def isValidNesbitt(a, b, c): # 3 parts of the # inequality sum A = a / (b + c); B = b / (a + c); C = c / (a + b); inequality = A + B + C; return (inequality > = 1.5 ); # Driver Code a = 1.0 ; b = 2.0 ; c = 3.0 ; if (isValidNesbitt(a, b, c)): print ( "Nesbitt's inequality satisfied." , " for real numbers " ,a, ", " ,b, ", " ,c); else : print ( "Not satisfied" ); # This code is contributed by mits |
C#
// C# code to verify // Nesbitt's Inequality using System; class GFG { static bool isValidNesbitt( double a, double b, double c) { // 3 parts of the // inequality sum double A = a / (b + c); double B = b / (a + c); double C = c / (a + b); double inequality = A + B + C; return (inequality >= 1.5); } // Driver code static public void Main () { double a = 1.0, b = 2.0, c = 3.0; if (isValidNesbitt(a, b, c) == true ) { Console.Write( "Nesbitt's inequality" + " satisfied " ); Console.WriteLine( "for real numbers " + a + ", " + b + ", " + c); } else Console.WriteLine( "Nesbitts inequality" + " not satisfied" ); } } // This code is contributed by ajit |
PHP
<?php // PHP code to verify // Nesbitt's Inequality function isValidNesbitt( $a , $b , $c ) { // 3 parts of the // inequality sum $A = $a / ( $b + $c ); $B = $b / ( $a + $c ); $C = $c / ( $a + $b ); $inequality = $A + $B + $C ; return ( $inequality >= 1.5); } // Driver Code $a = 1.0; $b = 2.0; $c = 3.0; if (isValidNesbitt( $a , $b , $c )) echo "Nesbitt's inequality satisfied." , "for real numbers " , $a , ", " , $b , ", " , $c , "\n" ; else cout << "Not satisfied" ; // This code is contributed by Ajit. ?> |
Javascript
<script> // Javascript code to verify Nesbitt's Inequality function isValidNesbitt(a, b, c) { // 3 parts of the // inequality sum let A = a / (b + c); let B = b / (a + c); let C = c / (a + b); let inequality = A + B + C; return (inequality >= 1.5); } // Driver code let a = 1.0, b = 2.0, c = 3.0; if (isValidNesbitt(a, b, c) == true ) { document.write( "Nesbitt's inequality" + " satisfied." ); document.write( "for real numbers " + a + ", " + b + ", " + c); } else document.write( "Nesbitts inequality" + " not satisfied" ); // This code is contributed by decode2207 </script> |
Nesbitt's inequality satisfied.for real numbers 1, 2, 3
Time complexity : O(1)
Auxiliary Space : O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!