Wednesday, January 22, 2025
Google search engine
HomeData Modelling & AIGenerate Array whose difference of each element with its left yields the...

Generate Array whose difference of each element with its left yields the given Array

Given an integer N and an arr1[], of (N – 1) integers, the task is to find the sequence arr2[] of N integers in the range [1, N] such that arr1[i] = arr2[i+1] – arr2[i]. The integers in sequence arr1[] lies in range [-N, N].
Examples: 
 

Input: N = 3, arr1[] = {-2, 1} 
Output: arr2[] = {3, 1, 2} 
Explanation: 
arr2[1] – arr2[0] = (1 – 3) = -2 = arr1[0] 
arr2[2] – arr2[1] = (2 – 1) = 1 = arr1[1]
Input: N = 5, arr1 = {1, 1, 1, 1, 1} 
Output: arr2 = {1, 2, 3, 4, 5} 
Explanation: 
arr2[1] – arr2[0] = (2 – 1) = 1 = arr1[0] 
arr2[2] – arr2[1] = (3 – 2) = 1 = arr1[1] 
arr2[3] – arr2[2] = (4 – 3) = 1 = arr1[2] 
arr2[4] – arr2[3] = (5 – 4) = 1 = arr1[3] 
 

 

Approach: 
Follow the steps to solve the problem: 
 

  1. Assume the first element of arr2[] to be X.
  2. The next element will be X + arr1[0].
  3. The rest of the elements of arr2[] can be represented, w.r.t X.
  4. It is known that the sequence arr2[] can contain integers in the range [1, N]. So the minimum possible integer would be 1.
  5. The minimum number of the arr2[] can be found out in terms of X, and equate it with 1 to find the value of X.
  6. Finally using the values of X, all the other numbers in arr2[] can be found out.

Below is the implementation of the above approach: 
 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sequence
void find_seq(int arr[],
              int m, int n) {
    int b[n];
    int x = 0;
 
    // initializing 1st element
    b[0] = x;
 
    // Creating sequence in
    // terms of x
    for (int i = 0;
         i < n - 1; i++) {
 
        b[i + 1] = x +
                   arr[i] + b[i];
    }
 
    int mn = n;
 
    // Finding min element
    for (int i = 0; i < n; i++)
    {
        mn = min(mn, b[i]);
    }
 
    // Finding value of x
    x = 1 - mn;
 
    // Creating original sequence
    for (int i = 0; i < n; i++) {
        b[i] += x;
    }
 
    // Output original sequence
    for (int i = 0; i < n; i++) {
        cout << b[i] << " ";
    }
    cout << endl;
}
 
// Driver function
int main()
{
    int N = 3;
    int arr[] = { -2, 1 };
 
    int M = sizeof(arr) / sizeof(int);
    find_seq(arr, M, N);
 
    return 0;
}


Java




// Java implementation of the above approach
class GFG{
     
// Function to find the sequence
static void find_seq(int arr[], int m,
                                int n)
{
    int b[] = new int[n];
    int x = 0;
 
    // Initializing 1st element
    b[0] = x;
 
    // Creating sequence in
    // terms of x
    for(int i = 0; i < n - 1; i++)
    {
       b[i + 1] = x + arr[i] + b[i];
    }
 
    int mn = n;
 
    // Finding min element
    for(int i = 0; i < n; i++)
    {
       mn = Math.min(mn, b[i]);
    }
 
    // Finding value of x
    x = 1 - mn;
 
    // Creating original sequence
    for(int i = 0; i < n; i++)
    {
       b[i] += x;
    }
 
    // Output original sequence
    for(int i = 0; i < n; i++)
    {
        System.out.print(b[i] + " ");
    }
    System.out.println();
}
     
// Driver code
public static void main (String[] args)
{
    int N = 3;
    int arr[] = new int[]{ -2, 1 };
    int M = arr.length;
     
    find_seq(arr, M, N);
}
}
 
// This code is contributed by Pratima Pandey


Python3




# Python3 program for the above approach
 
# Function to find the sequence
def find_seq(arr, m, n):
     
    b = []
    x = 0
     
    # Initializing 1st element
    b.append(x)
     
    # Creating sequence in
    # terms of x
    for i in range(n - 1):
        b.append(x + arr[i] + b[i])
         
    mn = n
     
    # Finding min element
    for i in range(n):
        mn = min(mn, b[i])
         
    # Finding value of x
    x = 1 - mn
         
    # Creating original sequence
    for i in range(n):
        b[i] += x
         
    # Output original sequence
    for i in range(n):
        print(b[i], end = ' ')
     
    print()
     
# Driver code
if __name__=='__main__':
     
    N = 3
    arr = [ -2, 1 ]
    M = len(arr)
     
    find_seq(arr, M, N)
 
# This code is contributed by rutvik_56


C#




// C# implementation of the above approach
using System;
 
class GFG{
     
// Function to find the sequence
static void find_seq(int []arr, int m,
                                int n)
{
    int []b = new int[n];
    int x = 0;
 
    // Initializing 1st element
    b[0] = x;
 
    // Creating sequence in
    // terms of x
    for(int i = 0; i < n - 1; i++)
    {
       b[i + 1] = x + arr[i] + b[i];
    }
 
    int mn = n;
 
    // Finding min element
    for(int i = 0; i < n; i++)
    {
       mn = Math.Min(mn, b[i]);
    }
 
    // Finding value of x
    x = 1 - mn;
 
    // Creating original sequence
    for(int i = 0; i < n; i++)
    {
       b[i] += x;
    }
 
    // Output original sequence
    for(int i = 0; i < n; i++)
    {
       Console.Write(b[i] + " ");
    }
    Console.WriteLine();
}
     
// Driver code
public static void Main(String[] args)
{
    int N = 3;
    int []arr = new int[]{ -2, 1 };
    int M = arr.Length;
     
    find_seq(arr, M, N);
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find the sequence
function find_seq(arr,m, n) {
    let b = new Array(n);
    let x = 0;
 
    // initializing 1st element
    b[0] = x;
 
    // Creating sequence in
    // terms of x
    for (let i = 0;
         i < n - 1; i++) {
 
        b[i + 1] = x +
                   arr[i] + b[i];
    }
 
    let mn = n;
 
    // Finding min element
    for (let i = 0; i < n; i++)
    {
        mn = Math.min(mn, b[i]);
    }
 
    // Finding value of x
    x = 1 - mn;
 
    // Creating original sequence
    for (let i = 0; i < n; i++) {
        b[i] += x;
    }
 
    // Output original sequence
    for (let i = 0; i < n; i++) {
        document.write(b[i] + " ");
    }
    document.write("<br>");
}
 
// Driver function
 
    let N = 3;
    let arr = [ -2, 1 ];
 
    let M = arr.length;
    find_seq(arr, M, N);
 
  
// This code is contributed by Mayank Tyagi
 
</script>


Output: 

3 1 2

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments