Thursday, January 23, 2025
Google search engine
HomeData Modelling & AICheck if all the diagonals of the Matrix are palindromic or not

Check if all the diagonals of the Matrix are palindromic or not

Given a matrix mat[][] of dimensions N*M, the task is to check if all the diagonals of the matrix(from top-right to bottom-left) are palindromic or not. If found to be true, then print Yes. Otherwise, print No.

Examples:

Input: mat[][] = [[1, 0, 0, 0], [0, 1, 1, 1], [0, 1, 0, 1], [0, 1, 1, 0]]
Output: Yes
Explanation:
All the diagonals of the matrix mat[][] is given by:

  • {1}
  • {0, 0}
  • {0, 1, 0}
  • {0, 1, 1, 0}
  • {1, 0, 1}
  • {1, 1}
  • {0}

As all the above diagonals are palindromic. Therefore, print Yes.

Input: mat[][] = [[1, 0, 0, 0], [1, 1, 0, 1], [1, 0, 1, 1], [0, 1, 0, 1]]
Output: No

Approach: The given problem can be solved by performing the diagonal traversal of the matrix and for every diagonal traversal check if the elements are palindromic or not. If there exists any such diagonal which is not palindromic, then print Yes. Otherwise, print No.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
#define N 5
 
// Function to check if the matrix is
// palindrome or not
string isbinaryMatrixPalindrome(
    int mat[N][N])
{
 
    // Traverse the matrix and check if
    // top right and bottom left elements
    // have same value
    for (int i = 0; i < N - 1; i++) {
        for (int j = N - 1; j > i; j--) {
 
            // If top right element is not
            // equal to the bottom left
            // element return false
            if (mat[i][j] != mat[j][i]) {
                return "Np";
            }
        }
    }
 
    return "Yes";
}
 
// Driver Code
int main()
{
    int mat[N][N] = { { 1, 0, 0, 1, 1 },
                      { 0, 1, 0, 1, 0 },
                      { 0, 0, 1, 1, 1 },
                      { 1, 1, 1, 0, 1 },
                      { 1, 0, 1, 1, 0 } };
 
    cout << isbinaryMatrixPalindrome(mat);
 
    return 0;
}


Java




// Java program for the above approach
 
public class GFG {
     
    final static int N = 5;
     
    // Function to check if the matrix is
    // palindrome or not
    static String isbinaryMatrixPalindrome(int mat[][])
    {
     
        // Traverse the matrix and check if
        // top right and bottom left elements
        // have same value
        for (int i = 0; i < N - 1; i++) {
            for (int j = N - 1; j > i; j--) {
     
                // If top right element is not
                // equal to the bottom left
                // element return false
                if (mat[i][j] != mat[j][i]) {
                    return "Np";
                }
            }
        }
     
        return "Yes";
    }
     
    // Driver Code
    public static void main (String[] args) {
         
        int mat[][] = { { 1, 0, 0, 1, 1 },
                          { 0, 1, 0, 1, 0 },
                          { 0, 0, 1, 1, 1 },
                          { 1, 1, 1, 0, 1 },
                          { 1, 0, 1, 1, 0 } };
     
        System.out.println(isbinaryMatrixPalindrome(mat));
    }
}
 
// This code is contributed by AnkThon


Python3




# python program for the above approach
N = 5
 
# Function to check if the matrix is
# palindrome or not
def isbinaryMatrixPalindrome(mat):
 
    # Traverse the matrix and check if
    # top right and bottom left elements
    # have same value
    for i in range(0, N - 1):
        for j in range(N - 1, i, -1):
 
            # If top right element is not
            # equal to the bottom left
            # element return false
            if (mat[i][j] != mat[j][i]):
                return "No"
 
    return "Yes"
 
# Driver Code
if __name__ == "__main__":
 
    mat = [[1, 0, 0, 1, 1],
           [0, 1, 0, 1, 0],
           [0, 0, 1, 1, 1],
           [1, 1, 1, 0, 1],
           [1, 0, 1, 1, 0]]
    print(isbinaryMatrixPalindrome(mat))
 
    # This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
public class GFG {
     
    static int N = 5;
     
    // Function to check if the matrix is
    // palindrome or not
    static string isbinaryMatrixPalindrome(int [,]mat)
    {
     
        // Traverse the matrix and check if
        // top right and bottom left elements
        // have same value
        for (int i = 0; i < N - 1; i++) {
            for (int j = N - 1; j > i; j--) {
     
                // If top right element is not
                // equal to the bottom left
                // element return false
                if (mat[i, j] != mat[j, i]) {
                    return "Np";
                }
            }
        }
     
        return "Yes";
    }
     
    // Driver Code
    public static void Main (string[] args) {
         
        int [,]mat = { { 1, 0, 0, 1, 1 },
                          { 0, 1, 0, 1, 0 },
                          { 0, 0, 1, 1, 1 },
                          { 1, 1, 1, 0, 1 },
                          { 1, 0, 1, 1, 0 } };
     
        Console.WriteLine(isbinaryMatrixPalindrome(mat));
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
// Javascript program for the above approach
 
let N = 5;
 
// Function to check if the matrix is
// palindrome or not
function isbinaryMatrixPalindrome(mat)
{
 
  // Traverse the matrix and check if
  // top right and bottom left elements
  // have same value
  for (let i = 0; i < N - 1; i++)
  {
    for (let j = N - 1; j > i; j--)
    {
     
      // If top right element is not
      // equal to the bottom left
      // element return false
      if (mat[i][j] != mat[j][i]) {
        return "Np";
      }
    }
  }
 
  return "Yes";
}
 
// Driver Code
 
let mat = [
  [1, 0, 0, 1, 1],
  [0, 1, 0, 1, 0],
  [0, 0, 1, 1, 1],
  [1, 1, 1, 0, 1],
  [1, 0, 1, 1, 0],
];
 
document.write(isbinaryMatrixPalindrome(mat));
 
// This code is contributed by saurabh_jaiswal.
</script>


Output: 

Yes

 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Another Approach:

  1. Traverse each diagonal of the matrix from top-right to bottom-left.
  2. For each diagonal, create a temporary string and append each element in the diagonal to it.
  3. Check if the temporary string is a palindrome. If not, return “No”.
  4. If all diagonals are palindromic, return “Yes”.

Below is the implementation of the above approach:

C++




#include <iostream>
#include <string>
using namespace std;
 
#define N 4
#define M 4
 
// Function to check if a string is a palindrome
bool isPalindrome(string s) {
    int n = s.length();
    for (int i = 0; i < n/2; i++) {
        if (s[i] != s[n-i-1]) {
            return false;
        }
    }
    return true;
}
 
// Function to check if all diagonals of a matrix are palindromic
string isDiagonalPalindrome(int mat[N][M]) {
    // Traverse diagonals starting from top-right corner
    for (int i = 0; i < N; i++) {
        string s = "";
        int x = i, y = M-1;
        while (x < N && y >= 0) {
            s += to_string(mat[x][y]);
            x++;
            y--;
        }
        if (!isPalindrome(s)) {
            return "No";
        }
    }
    // Traverse diagonals starting from top-left corner
    for (int j = M-1; j >= 0; j--) {
        string s = "";
        int x = 0, y = j;
        while (x < N && y >= 0) {
            s += to_string(mat[x][y]);
            x++;
            y--;
        }
        if (!isPalindrome(s)) {
            return "No";
        }
    }
    return "Yes";
}
 
// Driver code
int main() {
    int mat[N][M] = {{1, 0, 0, 0},
                     {0, 1, 1, 1},
                     {0, 1, 0, 1},
                     {0, 1, 1, 0}};
    cout << isDiagonalPalindrome(mat) << endl;
    return 0;
}


Java




import java.util.*;
 
class Main {
    static final int N = 4;
    static final int M = 4;
 
    // Function to check if a string is a palindrome
    static boolean isPalindrome(String s) {
        int n = s.length();
        for (int i = 0; i < n/2; i++) {
            if (s.charAt(i) != s.charAt(n-i-1)) {
                return false;
            }
        }
        return true;
    }
 
    // Function to check if all diagonals of a matrix are palindromic
    static String isDiagonalPalindrome(int[][] mat) {
        // Traverse diagonals starting from top-right corner
        for (int i = 0; i < N; i++) {
            StringBuilder s = new StringBuilder();
            int x = i, y = M-1;
            while (x < N && y >= 0) {
                s.append(mat[x][y]);
                x++;
                y--;
            }
            if (!isPalindrome(s.toString())) {
                return "No";
            }
        }
        // Traverse diagonals starting from top-left corner
        for (int j = M-1; j >= 0; j--) {
            StringBuilder s = new StringBuilder();
            int x = 0, y = j;
            while (x < N && y >= 0) {
                s.append(mat[x][y]);
                x++;
                y--;
            }
            if (!isPalindrome(s.toString())) {
                return "No";
            }
        }
        return "Yes";
    }
 
    // Driver code
    public static void main(String[] args) {
        int[][] mat = {{1, 0, 0, 0},
                       {0, 1, 1, 1},
                       {0, 1, 0, 1},
                       {0, 1, 1, 0}};
        System.out.println(isDiagonalPalindrome(mat));
    }
}


Python3




# Python3 code to check if all diagonals of a matrix are palindromic
 
# Function to check if a string is a palindrome
 
 
def isPalindrome(s):
    n = len(s)
    for i in range(n // 2):
        if s[i] != s[n - i - 1]:
            return False
    return True
 
# Function to check if all diagonals of a matrix are palindromic
 
 
def isDiagonalPalindrome(mat):
    # Traverse diagonals starting from top-right corner
    for i in range(N):
        s = ""
        x, y = i, M - 1
        while x < N and y >= 0:
            s += str(mat[x][y])
            x += 1
            y -= 1
        if not isPalindrome(s):
            return "No"
    # Traverse diagonals starting from top-left corner
    for j in range(M - 1, -1, -1):
        s = ""
        x, y = 0, j
        while x < N and y >= 0:
            s += str(mat[x][y])
            x += 1
            y -= 1
        if not isPalindrome(s):
            return "No"
    return "Yes"
 
 
# Driver code
if __name__ == '__main__':
    N, M = 4, 4
    mat = [[1, 0, 0, 0],
           [0, 1, 1, 1],
           [0, 1, 0, 1],
           [0, 1, 1, 0]]
    print(isDiagonalPalindrome(mat))


C#




using System;
 
public class MainClass
{
 
  // Function to check if a string is a palindrome
  public static bool IsPalindrome(string s)
  {
    int n = s.Length;
    for (int i = 0; i < n / 2; i++) {
      if (s[i] != s[n - i - 1]) {
        return false;
      }
    }
    return true;
  }
  // Function to check if all diagonals of a matrix are
  // palindromic
  public static string IsDiagonalPalindrome(int[, ] mat)
  {
    int N = mat.GetLength(0);
    int M = mat.GetLength(1);
    // Traverse diagonals starting from top-right corner
    for (int i = 0; i < N; i++) {
      string s = "";
      int x = i, y = M - 1;
      while (x < N && y >= 0) {
        s += mat[x, y].ToString();
        x++;
        y--;
      }
      if (!IsPalindrome(s)) {
        return "No";
      }
    }
    // Traverse diagonals starting from top-left corner
    for (int j = M - 1; j >= 0; j--) {
      string s = "";
      int x = 0, y = j;
      while (x < N && y >= 0) {
        s += mat[x, y].ToString();
        x++;
        y--;
      }
      if (!IsPalindrome(s)) {
        return "No";
      }
    }
    return "Yes";
  }
 
  public static void Main()
  {
    int[, ] mat = { { 1, 0, 0, 0 },
                   { 0, 1, 1, 1 },
                   { 0, 1, 0, 1 },
                   { 0, 1, 1, 0 } };
    Console.WriteLine(IsDiagonalPalindrome(mat));
  }
}


Javascript




// Function to check if a string is a palindrome
function isPalindrome(s) {
    let n = s.length;
    for (let i = 0; i < n / 2; i++) {
        if (s[i] != s[n - i - 1]) {
            return false;
        }
    }
    return true;
}
 
// Function to check if all diagonals of a matrix are palindromic
function isDiagonalPalindrome(mat) {
    // Traverse diagonals starting from top-right corner
    for (let i = 0; i < N; i++) {
        let s = "";
        let x = i,
            y = M - 1;
        while (x < N && y >= 0) {
            s += mat[x][y].toString();
            x++;
            y--;
        }
        if (!isPalindrome(s)) {
            return "No";
        }
    }
    // Traverse diagonals starting from top-left corner
    for (let j = M - 1; j >= 0; j--) {
        let s = "";
        let x = 0,
            y = j;
        while (x < N && y >= 0) {
            s += mat[x][y].toString();
            x++;
            y--;
        }
        if (!isPalindrome(s)) {
            return "No";
        }
    }
    return "Yes";
}
 
// Driver code
const N = 4,
    M = 4;
let mat = [
    [1, 0, 0, 0],
    [0, 1, 1, 1],
    [0, 1, 0, 1],
    [0, 1, 1, 0]
];
console.log(isDiagonalPalindrome(mat));


Output

Yes

Time complexity: O(NM^2)
Auxiliary Space: O(NM)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments