Thursday, January 23, 2025
Google search engine
HomeData Modelling & AICount of pairs in given Array with product of their values equal...

Count of pairs in given Array with product of their values equal to sum of their indices (arr[i]*arr[j] = i+j)

Given an array arr[] of length N with distinct integers from 1 to 2*N, the task is to count the number of pairs of indices (i, j) such that (i < j) and arr[i] * arr[j] = i + j, i.e. calculate the number of pairs such that their product is equal to their sum of indices.

Examples: 

Input: N = 5, arr[] = {3, 1, 5, 9, 2}
Output: 3
Explanation: There are three pairs (i, j) such that (i < j) and arr[i] * arr[j] = i + j (1, 2), (1, 5), (2, 3)

Input: N = 3, arr[] = {6, 1, 5}
Output: 1

 

Naive Approach: Iterate over all pairs of indices (i, j) with (i < j) and check for each pair if the above condition is satisfied, then increase the answer by 1 otherwise go to the next pair.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number of
// unique pairs
int NumberOfRequiredPairs(int arr[], int N)
{
 
    // Variable that with stores number
    // of valid pairs
    int ans = 0;
 
    // Traverse the array for every
    // possible index i
    for (int i = 0; i < N; i++)
 
        // Traverse the array for every
        // possible j (i < j)
        // Please note that the indices
        // are used as 1 based indexing
        for (int j = i + 1; j < N; j++)
            if ((arr[i] * arr[j])
                == ((i + 1) + (j + 1)))
                ans++;
 
    // Return the ans
    return ans;
}
 
// Driver Code
int main()
{
    // Given Input
    int N = 5;
    int arr[] = { 3, 1, 5, 9, 2 };
 
    // Function Call
    cout << NumberOfRequiredPairs(arr, N);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
class GFG
{
 
// Function to find the number of
// unique pairs
static int NumberOfRequiredPairs(int arr[], int N)
{
 
    // Variable that with stores number
    // of valid pairs
    int ans = 0;
 
    // Traverse the array for every
    // possible index i
    for (int i = 0; i < N; i++)
 
        // Traverse the array for every
        // possible j (i < j)
        // Please note that the indices
        // are used as 1 based indexing
        for (int j = i + 1; j < N; j++)
            if ((arr[i] * arr[j])
                == ((i + 1) + (j + 1)))
                ans++;
 
    // Return the ans
    return ans;
}
 
// Driver code
public static void main (String[] args)
{
   
    // Given Input
    int N = 5;
    int arr[] = { 3, 1, 5, 9, 2 };
 
    // Function Call
    System.out.println(NumberOfRequiredPairs(arr, N));
}
}
 
// This code is contributed by sanjoy_62.


Python3




# Python program for the above approach
 
# Function to find the number of
# unique pairs
def NumberOfRequiredPairs(arr, N):
 
    # Variable that with stores number
    # of valid pairs
    ans = 0
 
    # Traverse the array for every
    # possible index i
    for i in range(N):
 
        # Traverse the array for every
        # possible j (i < j)
        # Please note that the indices
        # are used as 1 based indexing
        for j in range(i + 1, N):
            if ((arr[i] * arr[j]) == ((i + 1) + (j + 1))):
                ans += 1
 
    # Return the ans
    return ans
 
# Driver Code
# Given Input
N = 5
arr = [3, 1, 5, 9, 2]
 
# Function Call
print(NumberOfRequiredPairs(arr, N))
 
# This code is contributed by Saurabh Jaiswal


C#




// C# program for the above approach
using System;
class GFG
{
 
// Function to find the number of
// unique pairs
static int NumberOfRequiredPairs(int []arr, int N)
{
 
    // Variable that with stores number
    // of valid pairs
    int ans = 0;
 
    // Traverse the array for every
    // possible index i
    for (int i = 0; i < N; i++)
 
        // Traverse the array for every
        // possible j (i < j)
        // Please note that the indices
        // are used as 1 based indexing
        for (int j = i + 1; j < N; j++)
            if ((arr[i] * arr[j])
                == ((i + 1) + (j + 1)))
                ans++;
 
    // Return the ans
    return ans;
}
 
// Driver code
public static void  Main ()
{
   
    // Given Input
    int N = 5;
    int []arr = { 3, 1, 5, 9, 2 };
 
    // Function Call
    Console.Write(NumberOfRequiredPairs(arr, N));
}
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
// Javascript program for the above approach
 
// Function to find the number of
// unique pairs
function NumberOfRequiredPairs(arr, N)
{
 
    // Variable that with stores number
    // of valid pairs
    let ans = 0;
 
    // Traverse the array for every
    // possible index i
    for (let i = 0; i < N; i++)
 
        // Traverse the array for every
        // possible j (i < j)
        // Please note that the indices
        // are used as 1 based indexing
        for (let j = i + 1; j < N; j++)
            if ((arr[i] * arr[j])
                == ((i + 1) + (j + 1)))
                ans++;
 
    // Return the ans
    return ans;
}
 
// Driver Code
// Given Input
let N = 5;
let arr = [ 3, 1, 5, 9, 2 ];
 
// Function Call
document.write(NumberOfRequiredPairs(arr, N));
 
// This code is contributed by Samim Hossain Mondal.
</script>


Output

3

Time Complexity: O(N^2)
Auxiliary Space: O(1)

Efficient Approach : Rewrite the mentioned condition as 
 

arr[j] = (i + j)/arr[i]

 
Therefore, for each multiple of arr[i], find the respective j and check whether arr[j] is equal to (i + j)/ arr[i]. This approach is efficient because for each i it is required to go through each multiple of i till 2*N. As all numbers in the array are distinct, it can be concluded that the total iterations for calculating j will be like: 

N + N/2 + N/3 + N/4 + N/5…… 

This is a well-known result of the series of expansions of logN. For more information read about this here. Follow the steps below to solve the problem:

 

  • Initialize the variable ans as 0 to store the answer.
  • Iterate over the range [0, N] using the variable i and perform the following steps:
    • Initialize the variable k as the value of arr[i].
    • Iterate in a while loop till k is less than equal to 2*N and perform the following tasks:
      • Initialize the variable j as k-i-1.
      • If j is greater than equal to 1 and less than equal to N and arr[j – 1] is equal to k / arr[i] and j is greater than i+1, then increase the value of ans by 1.
  • After performing the above steps, print the value of ans as the answer.

 

Below is the implementation of the above approach: 

 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number of
// unique pairs
int NumberOfRequiredPairs(int arr[], int N)
{
 
    // Variable that with stores
    // number of valid pairs
    int ans = 0;
 
    // Traverse the array for every
    // possible index i
    for (int i = 0; i < N; i++) {
 
        // Initialize a dummy variable
        // for arr[i]
        int k = arr[i];
 
        // We will loop through every
        // multiple of arr[i];
        // Looping through 2*N because
        // the maximum element
        // in array can be 2*N
        // Please not that i and j are
        // in 1 based indexing
        while (k <= 2 * N) {
 
            // Calculating j
            int j = k - i - 1;
 
            // Now check if this j lies
            // between the bounds
            // of the array
            if (j >= 1 && j <= N) {
 
                // Checking the required
                // condition
                if ((arr[j - 1] == k / arr[i])
                    && j > i + 1) {
                    ans++;
                }
            }
 
            // Increasing k to its next multiple
            k += arr[i];
        }
    }
 
    // Return the ans
    return ans;
}
 
// Driver Code
int main()
{
    // Given Input
    int N = 5;
    int arr[] = { 3, 1, 5, 9, 2 };
 
    // Function Call
    cout << NumberOfRequiredPairs(arr, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
public class GFG
{
 
// Function to find the number of
// unique pairs
static int NumberOfRequiredPairs(int arr[], int N)
{
 
    // Variable that with stores
    // number of valid pairs
    int ans = 0;
 
    // Traverse the array for every
    // possible index i
    for (int i = 0; i < N; i++) {
 
        // Initialize a dummy variable
        // for arr[i]
        int k = arr[i];
 
        // We will loop through every
        // multiple of arr[i];
        // Looping through 2*N because
        // the maximum element
        // in array can be 2*N
        // Please not that i and j are
        // in 1 based indexing
        while (k <= 2 * N) {
 
            // Calculating j
            int j = k - i - 1;
 
            // Now check if this j lies
            // between the bounds
            // of the array
            if (j >= 1 && j <= N) {
 
                // Checking the required
                // condition
                if ((arr[j - 1] == k / arr[i])
                    && j > i + 1) {
                    ans++;
                }
            }
 
            // Increasing k to its next multiple
            k += arr[i];
        }
    }
 
    // Return the ans
    return ans;
}
 
// Driver code
public static void main (String args[])
{
   
    // Given Input
    int N = 5;
    int arr[] = { 3, 1, 5, 9, 2 };
 
    // Function Call
    System.out.println(NumberOfRequiredPairs(arr, N));
}
}
 
// This code is contributed by Samim Hossain Mondal.


Python3




# Python3 program for the above approach
 
# Function to find the number of
# unique pairs
def NumberOfRequiredPairs(arr, N) :
 
    # Variable that with stores
    # number of valid pairs
    ans = 0;
 
    # Traverse the array for every
    # possible index i
    for i in range(N) :
 
        # Initialize a dummy variable
        # for arr[i]
        k = arr[i];
 
        # We will loop through every
        # multiple of arr[i];
        # Looping through 2*N because
        # the maximum element
        # in array can be 2*N
        # Please not that i and j are
        # in 1 based indexing
        while (k <= 2 * N) :
 
            # Calculating j
            j = k - i - 1;
 
            # Now check if this j lies
            # between the bounds
            # of the array
            if (j >= 1 and j <= N) :
 
                # Checking the required
                # condition
                if ((arr[j - 1] == k // arr[i]) and j > i + 1) :
                    ans += 1;
 
            # Increasing k to its next multiple
            k += arr[i];
 
    # Return the ans
    return ans;
 
# Driver Code
if __name__ == "__main__" :
 
    # Given Input
    N = 5;
    arr = [ 3, 1, 5, 9, 2 ];
 
    # Function Call
    print(NumberOfRequiredPairs(arr, N));
 
    # This code is contributed by AnkThon


C#




// C# program for the above approach
using System;
class GFG
{
 
// Function to find the number of
// unique pairs
static int NumberOfRequiredPairs(int []arr, int N)
{
 
    // Variable that with stores
    // number of valid pairs
    int ans = 0;
 
    // Traverse the array for every
    // possible index i
    for (int i = 0; i < N; i++) {
 
        // Initialize a dummy variable
        // for arr[i]
        int k = arr[i];
 
        // We will loop through every
        // multiple of arr[i];
        // Looping through 2*N because
        // the maximum element
        // in array can be 2*N
        // Please not that i and j are
        // in 1 based indexing
        while (k <= 2 * N) {
 
            // Calculating j
            int j = k - i - 1;
 
            // Now check if this j lies
            // between the bounds
            // of the array
            if (j >= 1 && j <= N) {
 
                // Checking the required
                // condition
                if ((arr[j - 1] == k / arr[i])
                    && j > i + 1) {
                    ans++;
                }
            }
 
            // Increasing k to its next multiple
            k += arr[i];
        }
    }
 
    // Return the ans
    return ans;
}
 
// Driver code
public static void  Main ()
{
   
    // Given Input
    int N = 5;
    int []arr = { 3, 1, 5, 9, 2 };
 
    // Function Call
    Console.Write(NumberOfRequiredPairs(arr, N));
}
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
// Javascript program for the above approach
 
// Function to find the number of
// unique pairs
function NumberOfRequiredPairs(arr, N)
{
 
    // Variable that with stores
    // number of valid pairs
    let ans = 0;
 
    // Traverse the array for every
    // possible index i
    for (let i = 0; i < N; i++) {
 
        // Initialize a dummy variable
        // for arr[i]
        let k = arr[i];
 
        // We will loop through every
        // multiple of arr[i];
        // Looping through 2*N because
        // the maximum element
        // in array can be 2*N
        // Please not that i and j are
        // in 1 based indexing
        while (k <= 2 * N) {
 
            // Calculating j
            let j = k - i - 1;
 
            // Now check if this j lies
            // between the bounds
            // of the array
            if (j >= 1 && j <= N) {
 
                // Checking the required
                // condition
                if ((arr[j - 1] == k / arr[i])
                    && j > i + 1) {
                    ans++;
                }
            }
 
            // Increasing k to its next multiple
            k += arr[i];
        }
    }
 
    // Return the ans
    return ans;
}
 
// Driver Code
// Given Input
let N = 5;
let arr = [ 3, 1, 5, 9, 2 ];
 
// Function Call
document.write(NumberOfRequiredPairs(arr, N));
 
// This code is contributed by Samim Hossain Mondal.
</script>


Output

3

Time Complexity: O(N*log(N))
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments