Thursday, January 23, 2025
Google search engine
HomeData Modelling & AICount pairs from 1 to N such that their Sum is divisible...

Count pairs from 1 to N such that their Sum is divisible by their XOR

Given a number N      , the task is to count pairs (x, y) such that their sum (x+y) is divisible by their xor value (x^y) and the condition 1 ? x < y ? N holds true.
Examples

Input: N = 3
Output: 3
Explanation: 
(1, 2), (1, 3), (2, 3) are the valid pairs

Input: N = 6
Output: 11

Approach:  

  • After taking the array as input, first we need to find out all the possible pairs in that array.
  • So, find out the pairs from the array
  • Then for each pair, check whether the sum of the pair is divisible by the xor value of the pair. If it is, then increase the required count by one.
  • When all the pairs have been checked, return or print the count of such pair.

Below is the implementation of the above approach:  

C++




// C++ program to count pairs from 1 to N
// such that their Sum is divisible by their XOR
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count pairs
int countPairs(int n)
{
    // variable to store count
    int count = 0;
 
    // Generate all possible pairs such that
    // 1 <= x < y < n
    for (int x = 1; x < n; x++) {
        for (int y = x + 1; y <= n; y++) {
            if ((y + x) % (y ^ x) == 0)
                count++;
        }
    }
 
    return count;
}
 
// Driver code
int main()
{
    int n = 6;
 
    cout << countPairs(n);
 
    return 0;
}


Java




// Java program to count pairs from 1 to N
// such that their Sum is divisible by their XOR
class GFG
{
     
    // Function to count pairs
    static int countPairs(int n)
    {
        // variable to store count
        int count = 0;
     
        // Generate all possible pairs such that
        // 1 <= x < y < n
        for (int x = 1; x < n; x++)
        {
            for (int y = x + 1; y <= n; y++)
            {
                if ((y + x) % (y ^ x) == 0)
                    count++;
            }
        }
        return count;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int n = 6;
        System.out.println(countPairs(n));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 program to count pairs from 1 to N
# such that their Sum is divisible by their XOR
 
# Function to count pairs
def countPairs(n) :
 
    # variable to store count
    count = 0;
 
    # Generate all possible pairs such that
    # 1 <= x < y < n
    for x in range(1, n) :
        for y in range(x + 1, n + 1) :
            if ((y + x) % (y ^ x) == 0) :
                count += 1;
 
    return count;
 
# Driver code
if __name__ == "__main__" :
 
    n = 6;
 
    print(countPairs(n));
 
# This code is contributed by AnkitRai01


C#




// C# program to count pairs from 1 to N
// such that their Sum is divisible by their XOR
using System;
 
public class GFG
{
     
    // Function to count pairs
    static int countPairs(int n)
    {
        // variable to store count
        int count = 0;
     
        // Generate all possible pairs such that
        // 1 <= x < y < n
        for (int x = 1; x < n; x++)
        {
            for (int y = x + 1; y <= n; y++)
            {
                if ((y + x) % (y ^ x) == 0)
                    count++;
            }
        }
        return count;
    }
     
    // Driver code
    public static void Main()
    {
        int n = 6;
        Console.WriteLine(countPairs(n));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
 
// JavaScript program to count pairs from 1 to N
// such that their Sum is divisible by their XOR
 
// Function to count pairs
function countPairs(n)
{
    // variable to store count
    let count = 0;
 
    // Generate all possible pairs such that
    // 1 <= x < y < n
    for (let x = 1; x < n; x++) {
        for (let y = x + 1; y <= n; y++) {
            if ((y + x) % (y ^ x) == 0)
                count++;
        }
    }
 
    return count;
}
 
// Driver code
    let n = 6;
 
    document.write(countPairs(n));
 
// This code is contributed by Surbhi Tyagi.
 
</script>


Output: 

11

 

Time Complexity: O(N2),  as we are using nested loops to traverse N*N times.
Auxiliary Space: O(1), as we are not using any extra space.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments