Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMaximum sum of the array after dividing it into three segments

Maximum sum of the array after dividing it into three segments

Given an array a of size N. The task is to find the maximum sum of array possible by dividing the array into three segments such that each element in the first segment is multiplied by -1 and each element in the second segment is multiplied by 1 and each element in the third segment is multiplied by -1. The segments can intersect and any segment may include zero in it.

Examples: 

Input : a[] = {-6, 10, -3, 10, -2} 
Output : 25 
Divide the segments as {-6}, {10, -3, 10}, {-2)

Input : a[] = {-6, -10} 
Output : 16 

Approach: 
First we need is to calculate for all possible situations for every ith element where the division should be made.  

  • In the first traversal find if the ith element produces maximum sum by multiplying with -1 or keeping it as it is.
  • Store all values in the array b.
  • In the second traversal find maximum sum by decreasing a[i] and adding b[i] to it.

Below is the implementation of the above approach :  

C++




// C++ program to find maximum sum of array
// after dividing it into three segments
#include <bits/stdc++.h>
using namespace std;
 
// Function to find maximum sum of array
// after dividing it into three segments
int Max_Sum(int a[], int n)
{
    // To store sum upto ith index
    int b[n];
    int S = 0;
    int res = 0;
     
    // Traverse through the array
    for (int i = 0; i < n; i++)
    {
        b[i] = res;
        res += a[i];
        S += a[i];
         
        // Get the maximum possible sum
        res = max(res, -S);
    }
     
    // Store in the required answer
    int ans = S;
     
    // Maximum sum starting from left segment
    // by choosing between keeping array element as
    // it is or subtracting it
    ans = max(ans, res);
 
 
    // Finding maximum sum by decreasing a[i] and
    // adding b[i] to it that means max(multiplying
    // it by -1 or using b[i] value)
    int g = 0;
     
    // For third segment
    for (int i = n - 1; i >= 0; --i) {
        g -= a[i];
        ans = max(ans, g + b[i]);
    }
     
    // return the required answer
    return ans;
}
 
// Driver code
int main()
{
    int a[] = { -6, 10, -3, 10, -2 };
 
    int n = sizeof(a) / sizeof(a[0]);
     
    // Function call
    cout << "Maximum sum is: " << Max_Sum(a, n);
 
    return 0;
}


Java




// Java program to find maximum sum of array
// after dividing it into three segments
import java.util.*;
 
class GFG
{
 
// Function to find maximum sum of array
// after dividing it into three segments
static int Max_Sum(int a[], int n)
{
    // To store sum upto ith index
    int []b = new int[n];
    int S = 0;
    int res = 0;
     
    // Traverse through the array
    for (int i = 0; i < n; i++)
    {
        b[i] = res;
        res += a[i];
        S += a[i];
         
        // Get the maximum possible sum
        res = Math.max(res, -S);
    }
     
    // Store in the required answer
    int ans = S;
     
    // Maximum sum starting from left segment
    // by choosing between keeping array element as
    // it is or subtracting it
    ans = Math.max(ans, res);
 
    // Finding maximum sum by decreasing a[i] and
    // adding b[i] to it that means max(multiplying
    // it by -1 or using b[i] value)
    int g = 0;
     
    // For third segment
    for (int i = n - 1; i >= 0; --i)
    {
        g -= a[i];
        ans = Math.max(ans, g + b[i]);
    }
     
    // return the required answer
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { -6, 10, -3, 10, -2 };
 
    int n = a.length;
     
    // Function call
    System.out.println("Maximum sum is: " +
                            Max_Sum(a, n));
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program to find
# maximum sum of array after
# dividing it into three segments
 
# Function to find maximum sum of array
# after dividing it into three segments
def Max_Sum(a, n):
     
    # To store sum upto ith index
    b = [0 for i in range(n)]
    S = 0
    res = 0
 
    # Traverse through the array
    for i in range(n):
        b[i] = res
        res += a[i]
        S += a[i]
 
        # Get the maximum possible sum
        res = max(res, -S)
 
    # Store in the required answer
    ans = S
 
    # Maximum sum starting from
    # left segment by choosing between
    # keeping array element as it is
    # or subtracting it
    ans = max(ans, res)
 
    # Finding maximum sum by decreasing
    # a[i] and adding b[i] to it
    # that means max(multiplying it
    # by -1 or using b[i] value)
    g = 0
 
    # For third segment
    for i in range(n - 1, -1, -1):
        g -= a[i]
        ans = max(ans, g + b[i])
 
    # return the required answer
    return ans
 
# Driver code
a = [-6, 10, -3, 10, -2]
 
n = len(a)
 
# Function call
print("Maximum sum is:",
          Max_Sum(a, n))
            
# This code is contributed
# by Mohit Kumar


C#




// C#+ program to find maximum sum of array
// after dividing it into three segments
using System;
 
class GFG
{
 
// Function to find maximum sum of array
// after dividing it into three segments
static int Max_Sum(int []a, int n)
{
    // To store sum upto ith index
    int []b = new int[n];
    int S = 0;
    int res = 0;
     
    // Traverse through the array
    for (int i = 0; i < n; i++)
    {
        b[i] = res;
        res += a[i];
        S += a[i];
         
        // Get the maximum possible sum
        res = Math.Max(res, -S);
    }
     
    // Store in the required answer
    int ans = S;
     
    // Maximum sum starting from left segment
    // by choosing between keeping array element
    // as it is or subtracting it
    ans = Math.Max(ans, res);
 
    // Finding maximum sum by decreasing a[i] and
    // adding b[i] to it that means max(multiplying
    // it by -1 or using b[i] value)
    int g = 0;
     
    // For third segment
    for (int i = n - 1; i >= 0; --i)
    {
        g -= a[i];
        ans = Math.Max(ans, g + b[i]);
    }
     
    // return the required answer
    return ans;
}
 
// Driver code
public static void Main()
{
    int []a = { -6, 10, -3, 10, -2 };
 
    int n = a.Length;
     
    // Function call
    Console.WriteLine("Maximum sum is: " +
                           Max_Sum(a, n));
}
}
 
// This code is contributed by anuj_67..


PHP




<?php
// PHP program to find maximum sum of array
// after dividing it into three segments
 
// Function to find maximum sum of array
// after dividing it into three segments
function Max_Sum($a, $n)
{
    // To store sum upto ith index
    $b = array();
    $S = 0;
    $res = 0;
     
    // Traverse through the array
    for ($i = 0; $i < $n; $i++)
    {
        $b[$i] = $res;
        $res += $a[$i];
        $S += $a[$i];
         
        // Get the maximum possible sum
        $res = max($res, -$S);
    }
     
    // Store in the required answer
    $ans = $S;
     
    // Maximum sum starting from left segment
    // by choosing between keeping array element as
    // it is or subtracting it
    $ans = max($ans, $res);
 
    // Finding maximum sum by decreasing a[i] and
    // adding b[i] to it that means max(multiplying
    // it by -1 or using b[i] value)
    $g = 0;
     
    // For third segment
    for ($i = $n - 1; $i >= 0; --$i)
    {
        $g -= $a[$i];
        $ans = max($ans, $g + $b[$i]);
    }
     
    // return the required answer
    return $ans;
}
 
// Driver code
$a = array(-6, 10, -3, 10, -2 );
 
$n = count($a);
 
// Function call
echo ("Maximum sum is: ");
echo Max_Sum($a, $n);
 
// This code is contributed by Naman_garg.
?>


Javascript




<script>
    // Javascript program to find maximum sum of array
    // after dividing it into three segments
     
    // Function to find maximum sum of array
    // after dividing it into three segments
    function Max_Sum(a, n)
    {
        // To store sum upto ith index
        let b = new Array(n);
        let S = 0;
        let res = 0;
 
        // Traverse through the array
        for (let i = 0; i < n; i++)
        {
            b[i] = res;
            res += a[i];
            S += a[i];
 
            // Get the maximum possible sum
            res = Math.max(res, -S);
        }
 
        // Store in the required answer
        let ans = S;
 
        // Maximum sum starting from left segment
        // by choosing between keeping array element
        // as it is or subtracting it
        ans = Math.max(ans, res);
 
        // Finding maximum sum by decreasing a[i] and
        // adding b[i] to it that means max(multiplying
        // it by -1 or using b[i] value)
        let g = 0;
 
        // For third segment
        for (let i = n - 1; i >= 0; --i)
        {
            g -= a[i];
            ans = Math.max(ans, g + b[i]);
        }
 
        // return the required answer
        return ans;
    }
     
    let a = [ -6, 10, -3, 10, -2 ];
   
    let n = a.length;
       
    // Function call
    document.write("Maximum sum is: " +
                           Max_Sum(a, n));
 
</script>


Output: 

Maximum sum is: 25

 

Complexity Analysis:

Time complexity: O(N), as we are having 2 passes of the loop of size N inside the Max_Sum() function, so time complexity will be  O(N+N)->O(N).

Space Complexity: O(N), as we have created an array of size N inside the Max_Sum() function.
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments