We are given an integer N. We need to count the total number of such binary strings of length N such that the number of ‘0’s in the first string of length N/2 is double of the number of ‘0’s in the second string of length N/2.
Note: N is always an even positive integer.
Examples:
Input : N = 4
Output : 2
Explanation: 0010 and 0001 are two binary string such that the number of zero in the first half is double the number of zero in second half.
Input : N = 6
Output : 9
Naive Approach:We can generate all the binary string of length N and then one by one can check that whether selected string follows the given scenario. But the time complexity for this approach is exponential and is O(N*2N).
Efficient Approach: This approach is based on some mathematical analysis of the problem.
Pre-requisite for this approach: Factorial and Combinatoric with modulo function.
Note: Let n = N/2.
If we perform some analysis step by step:
- The number of strings which contain two ‘0’ in first half string and one ‘0’ in second half string, is equal to nC2 * nC1.
- The number of strings which contain four ‘0’ in first half string and two ‘0’ in second half string, is equal to nC4 * nC2.
- The number of strings which contain six ‘0’ in first half string and three ‘0’ in second half string, is equal to nC6 * nC3.
We repeat above procedure till the number of ‘0’ in first half become n if n is even or (n-1) if n is odd.
So, our final answer is ? (nC(2*i) * nCi), for 2 <= 2*i <= n.
Now, we can compute the required number of strings just by using Permutation and Combination.
Algorithm :
int n = N/2; for(int i=2;i<=n;i=i+2) ans += ( nCr(n, i) * nCr(n, i/2);
Note : You can use Dynamic Programming technique to pre-compute CoeFunc(N, i) i.e. nCi.
Time complexity is O(N) if we pre-compute CoeFunc(N, i) in O(N*N).
Implementation:
C++
// CPP for finding number of binary strings // number of '0' in first half is double the // number of '0' in second half of string #include <bits/stdc++.h> // pre define some constant #define mod 1000000007 #define max 1001 using namespace std; // global values for pre computation long long int nCr[1003][1003]; void preComputeCoeff() { for ( int i = 0; i < max; i++) { for ( int j = 0; j <= i; j++) { if (j == 0 || j == i) nCr[i][j] = 1; else nCr[i][j] = (nCr[i - 1][j - 1] + nCr[i - 1][j]) % mod; } } } // function to print number of required string long long int computeStringCount( int N) { int n = N / 2; long long int ans = 0; // calculate answer using proposed algorithm for ( int i = 2; i <= n; i += 2) ans = (ans + ((nCr[n][i] * nCr[n][i / 2]) % mod)) % mod; return ans; } // Driver code int main() { preComputeCoeff(); int N = 3; cout << computeStringCount(N) << endl; return 0; } |
Java
// Java program for finding number of binary strings // number of '0' in first half is double the // number of '0' in second half of string class GFG { // pre define some constant static final long mod = 1000000007 ; static final long max = 1001 ; // global values for pre computation static long nCr[][] = new long [ 1003 ][ 1003 ]; static void preComputeCoeff() { for ( int i = 0 ; i < max; i++) { for ( int j = 0 ; j <= i; j++) { if (j == 0 || j == i) nCr[i][j] = 1 ; else nCr[i][j] = (nCr[i - 1 ][j - 1 ] + nCr[i - 1 ][j]) % mod; } } } // function to print number of required string static long computeStringCount( int N) { int n = N / 2 ; long ans = 0 ; // calculate answer using proposed algorithm for ( int i = 2 ; i <= n; i += 2 ) ans = (ans + ((nCr[n][i] * nCr[n][i / 2 ]) % mod)) % mod; return ans; } // main function public static void main(String[] args) { preComputeCoeff(); int N = 3 ; System.out.println( computeStringCount(N) ); } } // This code is contributed by Arnab Kundu. |
Python3
# Python3 for finding number of binary strings # number of '0' in first half is double the # number of '0' in second half of string # pre define some constant mod = 1000000007 Max = 1001 # global values for pre computation nCr = [[ 0 for _ in range ( 1003 )] for i in range ( 1003 )] def preComputeCoeff(): for i in range ( Max ): for j in range (i + 1 ): if (j = = 0 or j = = i): nCr[i][j] = 1 else : nCr[i][j] = (nCr[i - 1 ][j - 1 ] + nCr[i - 1 ][j]) % mod # function to print number of required string def computeStringCount(N): n = N / / 2 ans = 0 # calculate answer using proposed algorithm for i in range ( 2 , n + 1 , 2 ): ans = (ans + ((nCr[n][i] * nCr[n][i / / 2 ]) % mod)) % mod return ans # Driver code preComputeCoeff() N = 3 print (computeStringCount(N)) # This code is contributed by mohit kumar |
C#
// C# program for finding number of binary // strings number of '0' in first half is // double the number of '0' in second half // of string using System; class GFG { // pre define some constant static long mod = 1000000007; static long max = 1001; // global values for pre computation static long [,]nCr = new long [1003,1003]; static void preComputeCoeff() { for ( int i = 0; i < max; i++) { for ( int j = 0; j <= i; j++) { if (j == 0 || j == i) nCr[i,j] = 1; else nCr[i,j] = (nCr[i - 1,j - 1] + nCr[i - 1,j]) % mod; } } } // function to print number of required // string static long computeStringCount( int N) { int n = N / 2; long ans = 0; // calculate answer using proposed // algorithm for ( int i = 2; i <= n; i += 2) ans = (ans + ((nCr[n,i] * nCr[n,i / 2]) % mod)) % mod; return ans; } // main function public static void Main() { preComputeCoeff(); int N = 3; Console.Write( computeStringCount(N) ); } } // This code is contributed by nitin mittal. |
Javascript
<script> // Javascript for finding number of binary strings // number of '0' in first half is double the // number of '0' in second half of string // pre define some constant var mod = 1000000007 var max = 1001 // global values for pre computation var nCr = Array.from(Array(1003), ()=> Array(1003)); function preComputeCoeff() { for ( var i = 0; i < max; i++) { for ( var j = 0; j <= i; j++) { if (j == 0 || j == i) nCr[i][j] = 1; else nCr[i][j] = (nCr[i - 1][j - 1] + nCr[i - 1][j]) % mod; } } } // function to print number of required string function computeStringCount(N) { var n = N / 2; var ans = 0; // calculate answer using proposed algorithm for ( var i = 2; i <= n; i += 2) ans = (ans + ((nCr[n][i] * nCr[n][i / 2]) % mod)) % mod; return ans; } // Driver code preComputeCoeff(); var N = 3; document.write( computeStringCount(N)); // This code is contributed by noob2000. </script> |
0
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!