Friday, January 10, 2025
Google search engine
HomeData Modelling & AICount triplets from an array which can form quadratic equations with real...

Count triplets from an array which can form quadratic equations with real roots

Given an array arr[] consisting of N distinct positive integers, the task is to find the count of triplets (a, b, c) such that the quadratic equation aX2 + bX + c = 0 has real roots.

Examples:

Input: arr[] = { 2, 3, 6, 8 }
Output: 6
Explanation:
For the triplets (a = 2, b = 6, c = 3), (a = 3, b = 6, c = 2), (a = 2, b = 8, c = 3), (a = 3, b = 8, c = 2), (a = 2, b = 8, c = 6), (a = 6, b = 8, c = 2)}, the quadratic equation 2X2 + 6X + 3 = 0 has real roots.

Input: arr[] = [1, 2, 3, 4, 5]
Output: 14

Naive Approach: A quadratic equation has real roots if its determinant is less than or equal to 0. Therefore, a * c ? b * b / 4. The problem can be solved by using this property.
Follow the steps given below to solve the problem:

  • Iterate over the range [0, N – 1] using a variable, say b, and perform the following steps:
    1. For each value of b, run a loop from a = 0 to N – 1 and check if b and a are equal or not. If found to be true, then continue the loop.
    2. Now, iterate over the range [0, N – 1] using a variable, say c, and check if both b = c or a = c are satisfied or not. If found to be true, then continue the loop.
    3. If arr[a] * arr[C] ? arr[b] * arr[b] / 4, then increment the count.
  • Finally, return the count.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find count of triplets (a, b, c)
// such that the equations ax^2 + bx + c = 0
// has real roots
int getCount(int arr[], int N)
{
 
    // Stores count of triplets(a, b, c) such
    // that ax^2 + bx + c = 0 has real roots
    int count = 0;
     
    // Base case
    if (N < 3)
        return 0;
 
    // Generate all possible triplets(a, b, c)
    for (int b = 0; b < N; b++) {
        for (int a = 0; a < N; a++) {
         
            // If the coefficient of
            // X^2 and X are equal
            if (a == b)
                continue;
 
            for (int c = 0; c < N; c++) {
             
                // If coefficient of X^2
                // or x are equal to the
                // constant
                if (c == a || c == b)
                    continue;
 
                int d = arr[b] * arr[b] / 4;
             
                // Condition for having
                // real roots
                if (arr[a] * arr <= d)
                    count++;
            }
        }
    }
    return count;
}
 
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << getCount(arr, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// Function to find count of triplets (a, b, c)
// such that the equations ax^2 + bx + c = 0
// has real roots
static int getCount(int arr[], int N)
{
 
    // Stores count of triplets(a, b, c) such
    // that ax^2 + bx + c = 0 has real roots
    int count = 0;
     
    // Base case
    if (N < 3)
        return 0;
 
    // Generate all possible triplets(a, b, c)
    for (int b = 0; b < N; b++)
    {
        for (int a = 0; a < N; a++)
        {
         
            // If the coefficient of
            // X^2 and X are equal
            if (a == b)
                continue;
 
            for (int c = 0; c < N; c++)
            {
             
                // If coefficient of X^2
                // or x are equal to the
                // constant
                if (c == a || c == b)
                    continue;
                int d = arr[b] * arr[b] / 4;
             
                // Condition for having
                // real roots
                if (arr[a] * arr <= d)
                    count++;
            }
        }
    }
    return count;
}
 
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3, 4, 5 };
    int N = arr.length;
 
    // Function Call
    System.out.print(getCount(arr, N));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python Program for the above approach
 
# Function to find the count of triplets(a,b,c)
# Such that the equations ax^2 + bx + c = 0
# has real roots
 
def getcount(arr,N):
     
    # store count of triplets(a,b,c) such
    # that ax^2 + bx + c = 0 has real roots
    count = 0
 
    # base case
    if (N < 3):
        return 0
     
    # Generate all possible triplets (a,b,c)
    for b in range(0, N):
        for a in range(0, N):
           
            # if the coefficient of X^2
            # and x are equal
            if (a == b):
                continue
            for c in range(0, N):
               
                # if coefficient of X^2
                # or x are equal to the
                # constant
                if (c == a or c == b):
                    continue
                d = arr[b] * arr[b] // 4
                 
                # condition for having
                # real roots
                if (arr[a] * arr) <= d:
                    count += 1
    return count
 
# Driver code
arr = [1,2,3,4,5]
N = len(arr)
print(getcount(arr, N))
 
# This code is contributed by Virusbuddah


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG
{
 
  // Function to find count of triplets (a, b, c)
  // such that the equations ax^2 + bx + c = 0
  // has real roots
  static int getCount(int[] arr, int N)
  {
 
    // Stores count of triplets(a, b, c) such
    // that ax^2 + bx + c = 0 has real roots
    int count = 0;
 
    // Base case
    if (N < 3)
      return 0;
 
    // Generate all possible triplets(a, b, c)
    for (int b = 0; b < N; b++)
    {
      for (int a = 0; a < N; a++)
      {
 
        // If the coefficient of
        // X^2 and X are equal
        if (a == b)
          continue;
 
        for (int c = 0; c < N; c++)
        {
 
          // If coefficient of X^2
          // or x are equal to the
          // constant
          if (c == a || c == b)
            continue;
          int d = arr[b] * arr[b] / 4;
 
          // Condition for having
          // real roots
          if (arr[a] * arr <= d)
            count++;
        }
      }
    }
    return count;
  }
 
  // Driver Code
  static public void Main()
  {
    int[] arr = { 1, 2, 3, 4, 5 };
    int N = arr.Length;
 
    // Function Call
    Console.WriteLine(getCount(arr, N));
  }
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find count of triplets (a, b, c)
// such that the equations ax^2 + bx + c = 0
// has real roots
function getCount(arr, N)
{
     
    // Stores count of triplets(a, b, c) such
    // that ax^2 + bx + c = 0 has real roots
    var count = 0;
     
    // Base case
    if (N < 3)
        return 0;
 
    // Generate all possible triplets(a, b, c)
    for(var b = 0; b < N; b++)
    {
        for(var a = 0; a < N; a++)
        {
         
            // If the coefficient of
            // X^2 and X are equal
            if (a == b)
                continue;
 
            for(var c = 0; c < N; c++)
            {
             
                // If coefficient of X^2
                // or x are equal to the
                // constant
                if (c == a || c == b)
                    continue;
                     
                var d = arr[b] * arr[b] / 4;
             
                // Condition for having
                // real roots
                if (arr[a] * arr <= d)
                    count++;
            }
        }
    }
    return count;
}
 
// Driver Code
var arr = [ 1, 2, 3, 4, 5 ];
var N = arr.length;
 
// Function Call
document.write(getCount(arr, N));
 
// This code is contributed by Ankita saini
 
</script>


Output: 

14

 

Time Complexity: O(N3)
Auxiliary Space: O(1)

Efficient approach: The problem can be solved efficiently by Using sorting and two pointers algorithm
Follow the below steps to solve the problem:

  • Sort the given array arr[] in ascending order.
  • Run a loop from b = 0 to the size of the array.
    1. Initialize two variables a and c with 0 and size of array equal to -1, respectively.
    2. Run a loop while a < c holds true and check for the following conditions:
      1. If a = b, then increment a and continue the loop.
      2. If c = b, then decrement c and continue the loop.
      3. If arr[a] * arr[C] ? d, then check for the following conditions:
        • If a < b < c , then increase count by number of elements between them – 1(except arr[b]).
        • Otherwise, increase count by the number of elements between them.
      4. Otherwise, decrement c.
  • For each pair, two values are possible of a and c. So return count * 2.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of triplets
// (a, b, c) such that the equation
// ax^2 + bx + c = 0 has real roots
int getCount(int arr[], int N)
{
    // Sort the array in
    // ascending order
    sort(arr, arr + N);
 
    // Stores count of triplets(a, b, c) such
    // that ax^2 + bx + c = 0 has real roots
    int count = 0;
     
    // Base case
    if (N < 3)
        return 0;
 
    // Traverse the given array
    for (int b = 0; b < N; b++) {
 
        int a = 0, c = N - 1;
        int d = arr[b] * arr[b] / 4;
 
        while (a < c) {
 
            // If values of a and
            // c are equal to b
            if (a == b) {
                 
                // Increment a
                a++;
                continue;
            }
            if (c == b) {
                 
                // Decrement c
                c--;
                continue;
            }
 
            // Condition for having real
            // roots for a quadratic equation
            if (arr[a] * arr <= d) {
 
                // If b lies in
                // between a and c
                if (a < b && b < c) {
                     
                     
                    // Update count
                    count += c - a - 1;
                }
                else {
                     
                    // Update count
                    count += c - a;
                }
                 
                // Increment a
                a++;
            }
            else {
                 
                // Decrement c
                c--;
            }
        }
    }
 
    // For each pair two values
    // are possible of a and c
    return count * 2;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 6, 10, 13, 21 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    cout << getCount(arr, N);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Function to count the number of triplets
// (a, b, c) such that the equation
// ax^2 + bx + c = 0 has real roots
static int getCount(int arr[], int N)
{
   
    // Sort the array in
    // ascending order
    Arrays.sort(arr);
 
    // Stores count of triplets(a, b, c) such
    // that ax^2 + bx + c = 0 has real roots
    int count = 0;
     
    // Base case
    if (N < 3)
        return 0;
 
    // Traverse the given array
    for (int b = 0; b < N; b++)
    {
        int a = 0, c = N - 1;
        int d = arr[b] * arr[b] / 4;
        while (a < c)
        {
 
            // If values of a and
            // c are equal to b
            if (a == b)
            {
                 
                // Increment a
                a++;
                continue;
            }
            if (c == b)
            {
                 
                // Decrement c
                c--;
                continue;
            }
 
            // Condition for having real
            // roots for a quadratic equation
            if (arr[a] * arr <= d)
            {
 
                // If b lies in
                // between a and c
                if (a < b && b < c)
                {
                       
                    // Update count
                    count += c - a - 1;
                }
                else
                {
                     
                    // Update count
                    count += c - a;
                }
                 
                // Increment a
                a++;
            }
            else {
                 
                // Decrement c
                c--;
            }
        }
    }
 
    // For each pair two values
    // are possible of a and c
    return count * 2;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 3, 6, 10, 13, 21 };
    int N = arr.length;
 
    // Function Call
    System.out.print(getCount(arr, N));
}
}
 
// This code is contributed by code_hunt.


Python3




# Python3 Program for the above approach
 
# Function to  count the number of triplets(a,b,c)
# Such that the equations ax^2 + bx + c = 0
# has real roots
def getcount(arr, N):
 
    # sort he array in
    # ascending order
    arr.sort()
 
    # store count of triplets (a,b,c) such
    # that ax^2 + bx + c = 0 has real roots
    count = 0
 
    # base case
    if (N < 3):
        return 0
       
    # Traverse the given array
    for b in range(0, N):
        a = 0
        c = N - 1
        d = arr[b] * arr[b] // 4
        while(a < c):
           
            # if value of a and
            # c are equal to b
            if (a == b):
               
                # increment a
                a += 1
                continue
            if (c == b):
               
                # Decrement c
                c -= 1
                continue
                 
            # condition for having real
            # roots for a quadratic equation
            if (arr[a] * arr) <= d:
               
                # if b lies in
                # between a and c
                if (a < b and b < c):
                   
                    # update count
                    count += c - a - 1
                else:
                   
                    # update count
                    count += c - a
                     
                # increment a
                a += 1
            else:
               
                # Decrement c
                c -= 1
                 
    # for each pair two values
    # are possible of a and c           
    return count * 2
 
# Driver code
arr = [3,6,10,13,21]
N = len(arr)
print(getcount(arr,N))
 
# This code is contributed by Virusbuddah


C#




// C# program for the above approach
using System;
 
class GFG{
 
  // Function to count the number of triplets
  // (a, b, c) such that the equation
  // ax^2 + bx + c = 0 has real roots
  static int getCount(int[] arr, int N)
  {
 
    // Sort the array in
    // ascending order
    Array.Sort(arr);
 
    // Stores count of triplets(a, b, c) such
    // that ax^2 + bx + c = 0 has real roots
    int count = 0;
 
    // Base case
    if (N < 3)
      return 0;
 
    // Traverse the given array
    for (int b = 0; b < N; b++)
    {
      int a = 0, c = N - 1;
      int d = arr[b] * arr[b] / 4;
      while (a < c)
      {
 
        // If values of a and
        // c are equal to b
        if (a == b)
        {
 
          // Increment a
          a++;
          continue;
        }
        if (c == b)
        {
 
          // Decrement c
          c--;
          continue;
        }
 
        // Condition for having real
        // roots for a quadratic equation
        if (arr[a] * arr <= d)
        {
 
          // If b lies in
          // between a and c
          if (a < b && b < c)
          {
 
            // Update count
            count += c - a - 1;
          }
          else
          {
 
            // Update count
            count += c - a;
          }
 
          // Increment a
          a++;
        }
        else {
 
          // Decrement c
          c--;
        }
      }
    }
 
    // For each pair two values
    // are possible of a and c
    return count * 2;
  }
 
 
  // Driver Code
  static public void Main()
  {
    int[] arr = { 3, 6, 10, 13, 21 };
    int N = arr.Length;
 
    // Function Call
    Console.Write(getCount(arr, N));
  }
}
 
// This code is contributed by susmitakundugoaldanga.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to count the number of triplets
// (a, b, c) such that the equation
// ax^2 + bx + c = 0 has real roots
function getCount(arr, N)
{
   
    // Sort the array in
    // ascending order
    arr.sort();
 
    // Stores count of triplets(a, b, c) such
    // that ax^2 + bx + c = 0 has real roots
    var count = 0;
     
    // Base case
    if (N < 3)
        return 0;
 
    // Traverse the given array
    for(var b = 0; b < N; b++)
    {
        var a = 0, c = N - 1;
        var d = arr[b] * arr[b] / 4;
        while (a < c)
        {
 
            // If values of a and
            // c are equal to b
            if (a == b)
            {
                 
                // Increment a
                a++;
                continue;
            }
            if (c == b)
            {
                 
                // Decrement c
                c--;
                continue;
            }
 
            // Condition for having real
            // roots for a quadratic equation
            if (arr[a] * arr <= d)
            {
 
                // If b lies in
                // between a and c
                if (a < b && b < c)
                {
                       
                    // Update count
                    count += c - a - 1;
                }
                else
                {
                     
                    // Update count
                    count += c - a;
                }
                 
                // Increment a
                a++;
            }
            else
            {
                 
                // Decrement c
                c--;
            }
        }
    }
 
    // For each pair two values
    // are possible of a and c
    return count * 2;
}
 
// Driver Code
var arr = [ 3, 6, 10, 13, 21 ];
var N = arr.length;
 
// Function Call
document.write(getCount(arr, N));
         
// This code is contributed by Ankita saini
 
</script>


Output: 

16

 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments