Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMinimize cost to reach bottom-right corner of a Matrix using given operations

Minimize cost to reach bottom-right corner of a Matrix using given operations

Given a matrix grid[][] of size N x N, the task is to find the minimum cost required to reach the bottom right corner of the matrix from the top left corner, where the cost of moving to a new cell is [S/2] + K, where S is the score at the previous index and K is the matrix element at the current index. 
Note: Here, [X] is the largest integer which is not exceeding X.

Examples:

Input: grid[][] = {{0, 3, 9, 6}, {1, 4, 4, 5}, {8, 2, 5, 4}, {1, 8, 5, 9}}
Output: 12
Explanation: One of the possible set of moves is as follows 0 -> 1 -> 4 -> 4 -> 7 -> 7 -> 12.

 Input: grid[][] = {{0, 82, 2, 6, 7}, {4, 3, 1, 5, 21}, {6, 4, 20, 2, 8}, {6, 6, 64, 1, 8}, {1, 65, 1, 6, 4}}
Output: 7

Approach: Follow the steps below to solve the problem:

  • Make the first element of the matrix zero.
  • Traverse in the range [0, N-1]:
    • Initialize a list, say moveList, and append the moves i and j.
    • Initialize another list, say possibleWays, and append moveList in it.
    • Initialize a list, say possibleWaysSum, initially as an empty list.
    • Traverse the list possibleWays:
      • Traverse the appended moveList:
        • Check if the move is equal to i, then update i = i + 1.
        • Otherwise, update j = j + 1.
        • Initialize a variable, say tempSum. Set tempSum = tempSum + grid[i][j].
      • Append tempSum in possibleWays list after the loop.
  • Print the minimum cost from possibleWaysSum as the output.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
vector<vector<char> > possibleWays;
 
// Returns true if str[curr] does not matches with any
// of the characters after str[start]
bool shouldSwap(char str[], int start, int curr)
{
  for (int i = start; i < curr; i++) {
    if (str[i] == str[curr]) {
      return false;
    }
  }
  return true;
}
 
// Function for the swap
void swap(char str[], int i, int j)
{
  char c = str[i];
  str[i] = str[j];
  str[j] = c;
}
 
// Prints all distinct permutations in str[0..n-1]
void findPermutations(char str[], int index, int n)
{
  if (index >= n) {
    vector<char> l;
    for (int i = 0; i < n; i++)
      l.push_back(str[i]);
    possibleWays.push_back(l);
    return;
  }
 
  for (int i = index; i < n; i++) {
 
    // Proceed further for str[i] only if it
    // doesn't match with any of the characters
    // after str[index]
    bool check = shouldSwap(str, index, i);
    if (check) {
      swap(str, index, i);
      findPermutations(str, index + 1, n);
      swap(str, index, i);
    }
  }
}
 
// Function to print the minimum cost
void minCost(int grid[][5], int N)
{
 
  vector<char> moveList;
 
  // Making top-left value 0
  // implicitly to generate list of moves
  grid[0][0] = 0;
  vector<int> possibleWaysSum;
 
  for (int k = 0; k < N - 1; k++) {
 
    moveList.push_back('i');
    moveList.push_back('j');
 
    possibleWays.clear();
 
    // Convert into set to make only unique values
    int n = moveList.size();
    char str[n];
    for (int i = 0; i < n; i++)
      str[i] = moveList[i];
 
    // To store the unique permutation of moveList
    // into the possibleWays
    findPermutations(str, 0, n);
    possibleWaysSum.clear();
 
    // Traverse the list
    for (vector<char> way : possibleWays) {
      int i = 0, j = 0, tempSum = 0;
      for (char move : way) {
        if (move == 'i') {
          i += 1;
        }
        else {
          j += 1;
        }
 
        // Stores cost according to given
        // conditions
        tempSum = (int)(floor(tempSum / 2))
          + grid[i][j];
      }
      possibleWaysSum.push_back(tempSum);
    }
  }
 
  // Print the minimum possible cost
  int ans = possibleWaysSum[0];
  for (int i = 1; i < possibleWaysSum.size(); i++)
    ans = min(ans, possibleWaysSum[i]);
 
  cout << ans;
}
 
// Driven Program
int main()
{
   
  // Size of the grid
  int N = 4;
 
  // Given grid[][]
  int grid[][5] = { { 0, 3, 9, 6 },
                   { 1, 4, 4, 5 },
                   { 8, 2, 5, 4 },
                   { 1, 8, 5, 9 } };
 
  // Function call to print the minimum
  // cost to reach bottom-right corner
  // from the top-left corner of the matrix
  minCost(grid, N);
 
  return 0;
}
 
// This code is contributed by Kingash.


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG
{
    static ArrayList<ArrayList<Character> > possibleWays;
 
    // Returns true if str[curr] does not matches with any
    // of the characters after str[start]
    static boolean shouldSwap(char str[], int start,
                              int curr)
    {
        for (int i = start; i < curr; i++)
        {
            if (str[i] == str[curr])
            {
                return false;
            }
        }
        return true;
    }
 
    // Prints all distinct permutations in str[0..n-1]
    static void findPermutations(char str[], int index,
                                 int n)
    {
        if (index >= n)
        {
            ArrayList<Character> l = new ArrayList<>();
            for (char ch : str)
                l.add(ch);
            possibleWays.add(l);
            return;
        }
 
        for (int i = index; i < n; i++) {
 
            // Proceed further for str[i] only if it
            // doesn't match with any of the characters
            // after str[index]
            boolean check = shouldSwap(str, index, i);
            if (check) {
                swap(str, index, i);
                findPermutations(str, index + 1, n);
                swap(str, index, i);
            }
        }
    }
 
    // Function for the swap
    static void swap(char[] str, int i, int j)
    {
        char c = str[i];
        str[i] = str[j];
        str[j] = c;
    }
 
    // Function to print the minimum cost
    static void minCost(int grid[][], int N)
    {
 
        ArrayList<Character> moveList = new ArrayList<>();
 
        // Making top-left value 0
        // implicitly to generate list of moves
        grid[0][0] = 0;
        ArrayList<Integer> possibleWaysSum
            = new ArrayList<>();
 
        for (int k = 0; k < N - 1; k++) {
 
            moveList.add('i');
            moveList.add('j');
 
            possibleWays = new ArrayList<>();
 
            // Convert into set to make only unique values
            int n = moveList.size();
            char str[] = new char[n];
            for (int i = 0; i < n; i++)
                str[i] = moveList.get(i);
 
            // To store the unique permutation of moveList
            // into the possibleWays
            findPermutations(str, 0, n);
            possibleWaysSum = new ArrayList<>();
 
            // Traverse the list
            for (ArrayList<Character> way : possibleWays) {
                int i = 0, j = 0, tempSum = 0;
                for (char move : way) {
                    if (move == 'i') {
                        i += 1;
                    }
                    else {
                        j += 1;
                    }
                   
                    // Stores cost according to given
                    // conditions
                    tempSum = (int)(Math.floor(tempSum / 2))
                              + grid[i][j];
                }
                possibleWaysSum.add(tempSum);
            }
        }
 
        // Print the minimum possible cost
        int ans = possibleWaysSum.get(0);
        for (int i = 1; i < possibleWaysSum.size(); i++)
            ans = Math.min(ans, possibleWaysSum.get(i));
 
        System.out.println(ans);
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        // Size of the grid
        int N = 4;
 
        // Given grid[][]
        int grid[][] = { { 0, 3, 9, 6 },
                         { 1, 4, 4, 5 },
                         { 8, 2, 5, 4 },
                         { 1, 8, 5, 9 } };
 
        // Function call to print the minimum
        // cost to reach bottom-right corner
        // from the top-left corner of the matrix
        minCost(grid, N);
    }
}
 
// This code is contributed by Kingash.


Python3




# Python3 program for the above approach
 
from itertools import permutations
from math import floor
 
# Function to print the minimum cost
 
 
def minCost(grid, N):
    moveList = []
 
    # Making top-left value 0
    # implicitly to generate list of moves
    grid[0][0] = 0
 
    for i in range(N - 1):
        moveList.append('i')
        moveList.append('j')
 
        # Convert into set to make only unique values
        possibleWays = list(set(permutations(moveList)))
        possibleWaysSum = []
 
        # Traverse the list
        for way in possibleWays:
            i, j, tempSum = 0, 0, 0
            for move in way:
                if move == 'i':
                    i += 1
                else:
                    j += 1
 
                # Stores cost according to given conditions
                tempSum = floor(tempSum/2) + grid[i][j]
 
            possibleWaysSum.append(tempSum)
        minWayIndex = possibleWaysSum.index(min(possibleWaysSum))
 
    # Print the minimum possible cost
    print(min(possibleWaysSum))
 
 
# Size of the grid
N = 4
 
# Given grid[][]
grid = [[0, 3, 9, 6], [1, 4, 4, 5], [8, 2, 5, 4], [1, 8, 5, 9]]
 
# Function call to print the minimum
# cost to reach bottom-right corner
# from the top-left corner of the matrix
minCost(grid, N)


C#




// C# program for the above approach
 
using System;
using System.Collections.Generic;
 
class GFG {
  static List<List<char> > possibleWays;
 
  // Returns true if str[curr] does not matches with any
  // of the chars after str[start]
  static bool shouldSwap(char[] str, int start, int curr)
  {
    for (int i = start; i < curr; i++) {
      if (str[i] == str[curr]) {
        return false;
      }
    }
    return true;
  }
 
  // Prints all distinct permutations in str[0..n-1]
  static void findPermutations(char[] str, int index,
                               int n)
  {
    if (index >= n) {
      List<char> l = new List<char>();
      foreach(char ch in str) l.Add(ch);
      possibleWays.Add(l);
      return;
    }
 
    for (int i = index; i < n; i++) {
 
      // Proceed further for str[i] only if it
      // doesn't match with any of the chars
      // after str[index]
      bool check = shouldSwap(str, index, i);
      if (check) {
        swap(str, index, i);
        findPermutations(str, index + 1, n);
        swap(str, index, i);
      }
    }
  }
 
  // Function for the swap
  static void swap(char[] str, int i, int j)
  {
    char c = str[i];
    str[i] = str[j];
    str[j] = c;
  }
 
  // Function to print the minimum cost
  static void minCost(int[][] grid, int N)
  {
 
    List<char> moveList = new List<char>();
 
    // Making top-left value 0
    // implicitly to generate list of moves
    grid[0][0] = 0;
    List<int> possibleWaysSum = new List<int>();
 
    for (int k = 0; k < N - 1; k++) {
 
      moveList.Add('i');
      moveList.Add('j');
 
      possibleWays = new List<List<char> >();
 
      // Convert into set to make only unique values
      int n = moveList.Count;
      char[] str = new char[n];
      for (int i = 0; i < n; i++)
        str[i] = moveList[i];
 
      // To store the unique permutation of moveList
      // into the possibleWays
      findPermutations(str, 0, n);
      possibleWaysSum = new List<int>();
 
      // Traverse the list
      foreach(List<char> way in possibleWays)
      {
        int i = 0, j = 0, tempSum = 0;
        foreach(char move in way)
        {
          if (move == 'i') {
            i += 1;
          }
          else {
            j += 1;
          }
 
          // Stores cost according to given
          // conditions
          tempSum
            = (int)(tempSum / 2) + grid[i][j];
        }
        possibleWaysSum.Add(tempSum);
      }
    }
 
    // Print the minimum possible cost
    int ans = possibleWaysSum[0];
    for (int i = 1; i < possibleWaysSum.Count; i++)
      ans = Math.Min(ans, possibleWaysSum[i]);
 
    Console.WriteLine(ans);
  }
 
  // Driver code
  public static void Main(string[] args)
  {
 
    // Size of the grid
    int N = 4;
 
    // Given grid[][]
    int[][] grid
      = { new[] { 0, 3, 9, 6 }, new[] { 1, 4, 4, 5 },
         new[] { 8, 2, 5, 4 },
         new[] { 1, 8, 5, 9 } };
 
    // Function call to print the minimum
    // cost to reach bottom-right corner
    // from the top-left corner of the matrix
    minCost(grid, N);
  }
}
 
// This code is contributed by phasing17.


Javascript




<script>
// Javascript program for the above approach
let possibleWays = [];
 
// Returns true if str[curr] does not matches with any
// of the characters after str[start]
function shouldSwap(str, start, curr) {
    for (let i = start; i < curr; i++) {
        if (str[i] == str[curr]) {
            return false;
        }
    }
    return true;
}
 
// Prints all distinct permutations in str[0..n-1]
function findPermutations(str, index, n) {
    if (index >= n) {
        let l = new Array();
        for (let ch of str)
            l.push(ch);
        possibleWays.push(l);
        return;
    }
 
    for (let i = index; i < n; i++) {
 
        // Proceed further for str[i] only if it
        // doesn't match with any of the characters
        // after str[index]
        let check = shouldSwap(str, index, i);
        if (check) {
            swap(str, index, i);
            findPermutations(str, index + 1, n);
            swap(str, index, i);
        }
    }
}
 
// Function for the swap
function swap(str, i, j) {
    let c = str[i];
    str[i] = str[j];
    str[j] = c;
}
 
// Function to print the minimum cost
function minCost(grid, N) {
 
    let moveList = new Array();
 
    // Making top-left value 0
    // implicitly to generate list of moves
    grid[0][0] = 0;
    let possibleWaysSum = new Array();
 
    for (let k = 0; k < N - 1; k++) {
 
        moveList.push('i');
        moveList.push('j');
 
        possibleWays = new Array();
 
        // Convert into set to make only unique values
        let n = moveList.length;
        let str = [];
        for (let i = 0; i < n; i++)
            str[i] = moveList[i];
 
        // To store the unique permutation of moveList
        // into the possibleWays
        findPermutations(str, 0, n);
        possibleWaysSum = new Array();
 
        // Traverse the list
        for (let way of possibleWays) {
            let i = 0, j = 0, tempSum = 0;
            for (let move of way) {
                if (move == 'i') {
                    i += 1;
                }
                else {
                    j += 1;
                }
 
                // Stores cost according to given
                // conditions
                tempSum = (Math.floor(tempSum / 2))
                    + grid[i][j];
            }
            possibleWaysSum.push(tempSum);
        }
    }
 
    // Print the minimum possible cost
    let ans = possibleWaysSum[0];
    for (let i = 1; i < possibleWaysSum.length; i++)
        ans = Math.min(ans, possibleWaysSum[i]);
 
    document.write(ans);
}
 
// Driver code
 
// Size of the grid
let N = 4;
 
// Given grid[][]
let grid = [[0, 3, 9, 6],
[1, 4, 4, 5],
[8, 2, 5, 4],
[1, 8, 5, 9]];
 
// Function call to print the minimum
// cost to reach bottom-right corner
// from the top-left corner of the matrix
minCost(grid, N);
 
// This code is contributed by Saurabh Jaiswal
</script>


Output: 

12

 

Time Complexity: O(N2)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments