Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICheck if an array can be sorted by swapping pairs from indices...

Check if an array can be sorted by swapping pairs from indices consisting of unequal elements in another array

Given an array A[] of size N and a binary array B[] of size N, the task is to check if the array A[] can be converted into a sorted array by swapping pairs (A[i], A[j]) if B[i] is not equal to B[j]. If the array A[] can be sorted, then print “Yes“. Otherwise, print “No“.

Examples:

Input: A[] = {3, 1, 2}, B[] = {0, 1, 1}
Output: Yes
Explanation:
Swap element at position 1 and position 2 of A[] since B[1]!=B[2]. So, A[] = {1, 3, 2}, B[] = {1, 0, 1}
Now, swap element at position 2 and position 3 of A[] since B[2]!=B[3]. So, A[] = {1, 2, 3}. Hence, it is sorted.

Input: A[] = {5, 15, 4}, B[] = {0, 0, 0}
Output: No

Approach: The problem can be solved based on the following observations:

If at least two elements of the array, B[] are different, then it is possible to swap any two elements of the array A[].

Follow the steps below to solve the problem:

  • Check if the given array A[] is already sorted in ascending order or not. If found to be true, then print “Yes”.
  • Otherwise, count the number of 1s and 0s present in the array B[].
    • If the array B[] contains at least one 0 and one 1, then print “Yes”.
    • Otherwise, print “No”.

Below is the implementation of the above approach:

C++




// C++ Program for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if array, A[] can be converted
// into sorted array by swapping (A[i], A[j]) if B[i] is
// not equal to B[j]
bool checkifSorted(int A[], int B[], int N)
{
 
  // Stores if array A[] is sorted
  // in descending order or not
  bool flag = false;
 
  // Traverse the array A[]
  for (int i = 0; i < N - 1; i++) {
 
    // If A[i] is greater than A[i + 1]
    if (A[i] > A[i + 1]) {
 
      // Update flag
      flag = true;
      break;
    }
  }
 
  // If array is sorted
  // in ascending order
  if (!flag) {
    return true;
  }
 
  // count = 2: Check if 0s and 1s
  // both present in the B[]
  int count = 0;
 
  // Traverse the array
  for (int i = 0; i < N; i++) {
 
    // If current element is 0
    if (B[i] == 0) {
 
      // Update count
      count++;
      break;
    }
  }
 
 
  // Traverse the array B[]
  for (int i = 0; i < N; i++) {
 
    // If current element is 1
    if (B[i] == 1) {
      count++;
      break;
    }
  }
 
  // If both 0s and 1s are present
  // in the array
  if (count == 2) {
    return true;
  }
  return false;
}
 
// Driver Code
int main()
{
  // Input array A[]
  int A[] = { 3, 1, 2 };
 
  // Input array B[]
  int B[] = { 0, 1, 1 };
 
  int N = sizeof(A) / sizeof(A[0]);
  // Function call
  bool check = checkifSorted(A, B, N);
 
  // If true,print YES
  if (check) {
    cout << "YES" <<endl;
  }
  // Else print NO
  else {
    cout << "NO" <<endl;
  }
 
  return 0;
}


Java




// Java program of the above approach
import java.io.*;
 
class GFG {
 
     
    // Function to check if array, A[] can be converted
    // into sorted array by swapping (A[i], A[j]) if B[i]
    // not equal to B[j]
    static boolean checkifSorted(int A[], int B[], int N)
    {
         
        // Stores if array A[] is sorted
        // in descending order or not
        boolean flag = false;
 
        // Traverse the array A[]
        for (int i = 0; i < N - 1; i++) {
 
            // If A[i] is greater than A[i + 1]
            if (A[i] > A[i + 1]) {
 
                // Update flag
                flag = true;
                break;
            }
        }
 
        // If array is sorted
        // in ascending order
        if (!flag) {
            return true;
        }
 
        // count = 2: Check if 0s and 1s
        // both present in the B[]
        int count = 0;
 
        // Traverse the array
        for (int i = 0; i < N; i++) {
             
            // If current element is 0
            if (B[i] == 0) {
                 
                // Update count
                count++;
                break;
            }
        }
         
         
        // Traverse the array B[]
        for (int i = 0; i < N; i++) {
             
            // If current element is 1
            if (B[i] == 1) {
                count++;
                break;
            }
        }
 
        // If both 0s and 1s are present
        // in the array
        if (count == 2) {
            return true;
        }
        return false;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Input array A[]
        int A[] = { 3, 1, 2 };
 
        // Input array B[]
        int B[] = { 0, 1, 1 };
 
        int N = A.length;
        // Function call
        boolean check = checkifSorted(A, B, N);
 
        // If true,print YES
        if (check) {
            System.out.println("YES");
        }
        // Else print NO
        else {
            System.out.println("NO");
        }
    }
}


Python3




# Python program of the above approach
     
# Function to check if array, A[] can be converted
# into sorted array by swapping (A[i], A[j]) if B[i]
# not equal to B[j]
def checkifSorted(A, B, N):
   
  # Stores if array A[] is sorted
  # in descending order or not
  flag = False
 
  # Traverse the array A[]
  for i in range( N - 1):
     
    # If A[i] is greater than A[i + 1]
    if (A[i] > A[i + 1]):
       
      # Update flag
      flag = True
      break
 
  # If array is sorted
  # in ascending order
  if (not flag):
    return True
 
  # count = 2: Check if 0s and 1s
  # both present in the B[]
  count = 0
 
  # Traverse the array
  for i in range(N):
     
    # If current element is 0
    if (B[i] == 0):
       
      # Update count
      count += 1
      break
         
  # Traverse the array B[]
  for i in range(N):
     
    # If current element is 1
    if B[i]:
      count += 1
      break
       
  # If both 0s and 1s are present
  # in the array
  if (count == 2):
    return True
       
  return False
 
# Driver Code
# Input array A[]
A = [ 3, 1, 2 ]
 
# Input array B[]
B = [ 0, 1, 1 ]
N = len(A)
 
# Function call
check = checkifSorted(A, B, N)
 
# If true,print YES
if (check):
  print("YES")
         
# Else print NO
else:
  print("NO")
  
# This code is contributed by rohitsingh07052


C#




// C# program of the above approach
using System;
public class GFG
{
     
    // Function to check if array, A[] can be converted
    // into sorted array by swapping (A[i], A[j]) if B[i]
    // not equal to B[j]
    static bool checkifSorted(int []A, int []B, int N)
    {
         
        // Stores if array A[] is sorted
        // in descending order or not
        bool flag = false;
 
        // Traverse the array A[]
        for (int i = 0; i < N - 1; i++) {
 
            // If A[i] is greater than A[i + 1]
            if (A[i] > A[i + 1]) {
 
                // Update flag
                flag = true;
                break;
            }
        }
 
        // If array is sorted
        // in ascending order
        if (!flag) {
            return true;
        }
 
        // count = 2: Check if 0s and 1s
        // both present in the B[]
        int count = 0;
 
        // Traverse the array
        for (int i = 0; i < N; i++) {
             
            // If current element is 0
            if (B[i] == 0) {
                 
                // Update count
                count++;
                break;
            }
        }
         
         
        // Traverse the array B[]
        for (int i = 0; i < N; i++)
        {
             
            // If current element is 1
            if (B[i] == 1)
            {
                count++;
                break;
            }
        }
 
        // If both 0s and 1s are present
        // in the array
        if (count == 2)
        {
            return true;
        }
        return false;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        // Input array A[]
        int []A = { 3, 1, 2 };
 
        // Input array B[]
        int []B = { 0, 1, 1 };
        int N = A.Length;
         
        // Function call
        bool check = checkifSorted(A, B, N);
 
        // If true,print YES
        if (check) {
            Console.WriteLine("YES");
        }
        // Else print NO
        else {
            Console.WriteLine("NO");
        }
    }
}
 
// This code is contributed by AnkThon


Javascript




<script>
// javascript program of the above approach
 
    // Function to check if array, A can be converted
    // into sorted array by swapping (A[i], A[j]) if B[i]
    // not equal to B[j]
    function checkifSorted(A , B , N) {
 
        // Stores if array A is sorted
        // in descending order or not
        var flag = false;
 
        // Traverse the array A
        for (i = 0; i < N - 1; i++) {
 
            // If A[i] is greater than A[i + 1]
            if (A[i] > A[i + 1]) {
 
                // Update flag
                flag = true;
                break;
            }
        }
 
        // If array is sorted
        // in ascending order
        if (!flag) {
            return true;
        }
 
        // count = 2: Check if 0s and 1s
        // both present in the B
        var count = 0;
 
        // Traverse the array
        for (i = 0; i < N; i++) {
 
            // If current element is 0
            if (B[i] == 0) {
 
                // Update count
                count++;
                break;
            }
        }
 
        // Traverse the array B
        for (i = 0; i < N; i++) {
 
            // If current element is 1
            if (B[i] == 1) {
                count++;
                break;
            }
        }
 
        // If both 0s and 1s are present
        // in the array
        if (count == 2) {
            return true;
        }
        return false;
    }
 
    // Driver Code
     
        // Input array A
        var A = [ 3, 1, 2 ];
 
        // Input array B
        var B = [ 0, 1, 1 ];
 
        var N = A.length;
        // Function call
        var check = checkifSorted(A, B, N);
 
        // If true,print YES
        if (check) {
            document.write("YES");
        }
        // Else print NO
        else {
            document.write("NO");
        }
 
// This code contributed by Rajput-Ji
 
</script>


Output

YES







Time Complexity: O(N)
Auxiliary Space: O(1)

Approach 2: 

Here’s another approach to solve the problem:

  • Create a vector of pairs to store both the elements and their respective types (0 or 1) from arrays A and B.
  • Sort the vector in descending order based on the elements of A.
  • Traverse the sorted vector and check if the type of the current element is 0. If it is, then we have found the first unsorted element that needs to be swapped.
  • Traverse the rest of the vector and check if any other element with type 1 is present. If it is, then swap the elements and return “YES”. If not, return “NO”.

Here’s the code for the same approach:

C++




#include <bits/stdc++.h>
using namespace std;
 
bool checkIfSorted(int A[], int B[], int N) {
    vector<pair<int, int>> vec;
    for (int i = 0; i < N; i++) {
        vec.push_back({A[i], B[i]});
    }
    sort(vec.rbegin(), vec.rend());
    int unsortedIndex = -1;
    for (int i = 0; i < N - 1; i++) {
        if (vec[i].second > vec[i + 1].second) {
            unsortedIndex = i;
            break;
        }
    }
    if (unsortedIndex == -1) {
        return true;
    }
    for (int i = unsortedIndex + 1; i < N; i++) {
        if (vec[i].second == 1) {
            swap(vec[unsortedIndex].first, vec[i].first);
            break;
        }
    }
    for (int i = 0; i < N - 1; i++) {
        if (vec[i].first > vec[i + 1].first) {
            return false;
        }
    }
    return true;
}
 
int main() {
    int A[] = {3, 1, 2};
    int B[] = {0, 1, 1};
    int N = sizeof(A) / sizeof(A[0]);
    bool check = checkIfSorted(A, B, N);
    if (check) {
        cout << "YES" << endl;
    } else {
        cout << "NO" << endl;
    }
    return 0;
}


Java




// Nikunj Sonigara
 
import java.util.*;
 
class Main {
    // This function checks if the given arrays A and B can be sorted by swapping
    // elements in such a way that the resulting array is sorted in ascending order.
    static boolean checkIfSorted(int[] A, int[] B, int N) {
        List<Pair<Integer, Integer>> vec = new ArrayList<>();
         
        // Create a list of pairs, where each pair consists of elements from arrays A and B.
        for (int i = 0; i < N; i++) {
            vec.add(new Pair<>(A[i], B[i]));
        }
         
        // Sort the list of pairs in descending order based on the A values.
        vec.sort((a, b) -> Integer.compare(b.getKey(), a.getKey()));
         
        int unsortedIndex = -1;
         
        // Find the index where the list becomes unsorted in terms of B values.
        for (int i = 0; i < N - 1; i++) {
            if (vec.get(i).getValue() > vec.get(i + 1).getValue()) {
                unsortedIndex = i;
                break;
            }
        }
         
        if (unsortedIndex == -1) {
            return true; // If the list is already sorted by B values, return true.
        }
         
        // Find an element with B value equal to 1 and swap it with the unsorted element.
        for (int i = unsortedIndex + 1; i < N; i++) {
            if (vec.get(i).getValue() == 1) {
                Collections.swap(vec, unsortedIndex, i);
                break;
            }
        }
         
        // Check if the list is sorted in ascending order by A values after the swap.
        for (int i = 0; i < N - 1; i++) {
            if (vec.get(i).getKey() > vec.get(i + 1).getKey()) {
                return false; // If not sorted, return false.
            }
        }
         
        return true; // If sorted after the swap, return true.
    }
 
    public static void main(String[] args) {
        int[] A = {3, 1, 2};
        int[] B = {0, 1, 1};
        int N = A.length;
        boolean check = checkIfSorted(A, B, N);
        if (check) {
            System.out.println("YES"); // Output "YES" if the arrays can be sorted.
        } else {
            System.out.println("NO"); // Output "NO" if the arrays cannot be sorted.
        }
    }
     
    // Definition of the Pair class for storing pairs of elements.
    static class Pair<K, V> {
        private final K key;
        private final V value;
 
        public Pair(K key, V value) {
            this.key = key;
            this.value = value;
        }
 
        public K getKey() {
            return key;
        }
 
        public V getValue() {
            return value;
        }
    }
}


Python3




# Python code for the above approach
def checkIfSorted(A, B, N):
    vec = []
    # Create a list of tuples containing elements from A and B
    for i in range(N):
        vec.append([A[i], B[i]])
    # Sort the list in descending order based on the first element of each tuple
    vec.sort(key=lambda x: x[0], reverse=True)
    unsortedIndex = -1
    # Find the first index where the second element of the tuple is greater than the second element of the next tuple
    for i in range(N - 1):
        if vec[i][1] > vec[i + 1][1]:
            unsortedIndex = i
            break
    # If no such index is found, the list is already sorted
    if unsortedIndex == -1:
        return True
    # Swap the first element of the unsorted tuple with the first element of the next tuple with second element equal to 1
    for i in range(unsortedIndex + 1, N):
        if vec[i][1] == 1:
            vec[unsortedIndex][0], vec[i][0] = vec[i][0], vec[unsortedIndex][0]
            break
    # Check if the list is sorted in ascending order based on the first element of each tuple
    for i in range(N - 1):
        if vec[i][0] > vec[i + 1][0]:
            return False
    return True
 
A = [3, 1, 2]
B = [0, 1, 1]
N = len(A)
check = checkIfSorted(A, B, N)
if check:
    print("YES")
else:
    print("NO")
# This code is contributed by Kanchan Agarwal


C#




using System;
using System.Collections.Generic;
using System.Linq;
 
class Program
{
    static bool CheckIfSorted(int[] A, int[] B, int N)
    {
        List<Tuple<int, int>> vec = new List<Tuple<int, int>>();
 
        // Create a list of tuples containing elements from A and B
        for (int i = 0; i < N; i++)
        {
            vec.Add(new Tuple<int, int>(A[i], B[i]));
        }
 
        // Sort the list in descending order based on the first element of each tuple
        vec = vec.OrderByDescending(x => x.Item1).ToList();
 
        int unsortedIndex = -1;
 
        // Find the first index where the second element of the tuple is
      // greater than the second element of the next tuple
        for (int i = 0; i < N - 1; i++)
        {
            if (vec[i].Item2 > vec[i + 1].Item2)
            {
                unsortedIndex = i;
                break;
            }
        }
 
        // If no such index is found, the list is already sorted
        if (unsortedIndex == -1)
        {
            return true;
        }
 
        // Swap the first element of the unsorted tuple with the first element of the
      // next tuple with the second element equal to 1
        for (int i = unsortedIndex + 1; i < N; i++)
        {
            if (vec[i].Item2 == 1)
            {
                Tuple<int, int> temp = vec[unsortedIndex];
                vec[unsortedIndex] = Tuple.Create(vec[i].Item1, vec[unsortedIndex].Item2);
                vec[i] = Tuple.Create(temp.Item1, vec[i].Item2);
                break;
            }
        }
 
        // Check if the list is sorted in ascending order based on the first element of each tuple
        for (int i = 0; i < N - 1; i++)
        {
            if (vec[i].Item1 > vec[i + 1].Item1)
            {
                return false;
            }
        }
 
        return true;
    }
 
    static void Main(string[] args)
    {
        int[] A = { 3, 1, 2 };
        int[] B = { 0, 1, 1 };
        int N = A.Length;
 
        bool check = CheckIfSorted(A, B, N);
 
        if (check)
        {
            Console.WriteLine("YES");
        }
        else
        {
            Console.WriteLine("NO");
        }
    }
}


Javascript




function checkIfSorted(A, B, N) {
    let vec = [];
    for (let i = 0; i < N; i++) {
        vec.push([A[i], B[i]]);
    }
    vec.sort((a, b) => b[0] - a[0]);
    let unsortedIndex = -1;
    for (let i = 0; i < N - 1; i++) {
        if (vec[i][1] > vec[i + 1][1]) {
            unsortedIndex = i;
            break;
        }
    }
    if (unsortedIndex === -1) {
        return true;
    }
    for (let i = unsortedIndex + 1; i < N; i++) {
        if (vec[i][1] === 1) {
            [vec[unsortedIndex][0], vec[i][0]] = [vec[i][0],
            vec[unsortedIndex][0]];
            break;
        }
    }
    for (let i = 0; i < N - 1; i++) {
        if (vec[i][0] > vec[i + 1][0]) {
            return false;
        }
    }
    return true;
}
 
let A = [3, 1, 2];
let B = [0, 1, 1];
let N = A.length;
let check = checkIfSorted(A, B, N);
if (check) {
    console.log("YES");
} else {
    console.log("NO");
}


Output: 

YES

Time Complexity: O(N log N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments