You are given an array A[] of size N, the task is to divide the array into exactly three subarrays such that every element belongs to exactly one subarray such that the product of the sum of the subarrays is the maximum.
Examples:
Input: N = 4, A[] = { 1, 2, 2, 3}
Output: 18
Explanation: The optimal partitions are {1, 2}, {2}, {3}Input: N = 3, A[] = { 3, 5, 7}
Output: 105
Explanation: There is only one possible partition {3}, {5}, {7}.
Approach: This problem can be solved using the concept of sliding window and prefix-suffix array.
First, calculate the maximum product of 2 subarrays considering the size of the array from 0 to N starting from right. Now once we have the maximum product of 2 subarrays then the 3rd subarray will be on the left side.
For example, if we have calculated the maximum product of two subarrays for all the arrays starting from i to N where 0 < i < N – 1 then the third subarray will be subarray from 0 to i. And now we can calculate the maximum product of these two subarrays to get maximum product of 3 subarrays.
Follow the steps mentioned below to implement the idea.
- Create a suffix array of size N.
- Create two variables x and y to store the sum of the first two subarrays and initialize them as A[N-2] and A[N-1].
- Initialize suff[N-1] as the product of x and y.
- Now expand the subarray with sum x by 1 and keep sliding the subarray with sum y towards the subarray with sum x until suff[i] is less than x*y and update suff[i] as x*y.
- Finally, run a loop to calculate the maximum product between subarray 0 to i and the maximum product of two subarrays from i to N i.e. suff[i].
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h> using namespace std; // Function to find the maximum product long long subarrayProduct( int n, int a[]) { // Array to store the maximum product of // sum of two subarrays from i to N-1 vector< long long > suff(n, 0); long long x = a[n - 2], y = a[n - 1]; suff[n - 2] = x * y; int j = n - 1; // Loop to calculate the value of suff array for ( int i = n - 3; i >= 0; i--) { x += a[i]; suff[i] = x * y; while (suff[i] < (x - a[j - 1]) * (y + a[j - 1])) { j--; x -= a[j]; y += a[j]; suff[i] = x * y; } } long long l = 0, ans = 0; // Loop to calculate the maximum product of sums for ( int i = 0; i + 2 < n; i++) { l += a[i]; ans = max(ans, l * suff[i + 1]); } return ans; } // Driver code int main() { int A[] = { 1, 2, 2, 3 }; int N = sizeof (A) / sizeof (A[0]); // Function call cout << subarrayProduct(N, A) << endl; return 0; } |
Java
public class GFG { // Function to find the maximum product static int subarrayProduct( int n, int a[]) { // Array to store the maximum product of // sum of two subarrays from i to N-1 int suff[] = new int [n]; for ( int i = 0 ; i < n; i++) suff[i] = 0 ; int x = a[n - 2 ], y = a[n - 1 ]; suff[n - 2 ] = x * y; int j = n - 1 ; // Loop to calculate the value of suff array for ( int i = n - 3 ; i >= 0 ; i--) { x += a[i]; suff[i] = x * y; while (suff[i] < (x - a[j - 1 ]) * (y + a[j - 1 ])) { j--; x -= a[j]; y += a[j]; suff[i] = x * y; } } int l = 0 , ans = 0 ; // Loop to calculate the maximum product of sums for ( int i = 0 ; i + 2 < n; i++) { l += a[i]; ans = Math.max(ans, l * suff[i + 1 ]); } return ans; } public static void main(String[] args) { int A[] = { 1 , 2 , 2 , 3 }; // Function call System.out.println(subarrayProduct( 4 , A)); } } // This code is contributed by garg28harsh. |
Python3
# Python3 code for the above approach # Function to find the maximum product def subarrayProduct(n, a) : # Array to store the maximum product of # sum of two subarrays from i to N-1 suff = [ 0 ] * n; x = a[n - 2 ]; y = a[n - 1 ]; suff[n - 2 ] = x * y; j = n - 1 ; # Loop to calculate the value of suff array for i in range (n - 3 , - 1 , - 1 ) : x + = a[i]; suff[i] = x * y; while (suff[i] < (x - a[j - 1 ]) * (y + a[j - 1 ])) : j - = 1 ; x - = a[j]; y + = a[j]; suff[i] = x * y; l = 0 ; ans = 0 ; # Loop to calculate the maximum product of sums for i in range (n - 2 ) : l + = a[i]; ans = max (ans, l * suff[i + 1 ]); return ans; # Driver code if __name__ = = "__main__" : A = [ 1 , 2 , 2 , 3 ]; N = len (A); # Function call print (subarrayProduct(N, A)); # This code is contributed by AnkThon |
C#
using System; using System.Collections.Generic; public class GFG { // Function to find the maximum product public static long subarrayProduct( int n, int [] a) { // Array to store the maximum product of // sum of two subarrays from i to N-1 List< long > suff = new List< long >(); for ( int i = 0; i < n; i++) { suff.Add(0); } long x = a[n - 2]; long y = a[n - 1]; suff[n - 2] = x * y; int j = n - 1; // Loop to calculate the value of suff array for ( int i = n - 3; i >= 0; i--) { x += a[i]; suff[i] = x * y; while (suff[i] < (x - a[j - 1]) * (y + a[j - 1])) { j--; x -= a[j]; y += a[j]; suff[i] = x * y; } } long l = 0; long ans = 0; // Loop to calculate the maximum product of sums for ( int i = 0; i + 2 < n; i++) { l += a[i]; ans = Math.Max(ans, l * suff[i + 1]); } return ans; } // Driver code static public void Main() { int [] A = { 1, 2, 2, 3 }; int N = A.Length; // Function call Console.WriteLine(subarrayProduct(N, A)); } } // This code is contributed by akashish__ |
Javascript
// JavaScript code for the above approach // Function to find the maximum product function subarrayProduct(n, a) { // Array to store the maximum product of // sum of two subarrays from i to N-1 let suff = new Array(n).fill(0); let x = a[n - 2], y = a[n - 1]; suff[n - 2] = x * y; let j = n - 1; // Loop to calculate the value of suff array for (let i = n - 3; i >= 0; i--) { x += a[i]; suff[i] = x * y; while (suff[i] < (x - a[j - 1]) * (y + a[j - 1])) { j--; x -= a[j]; y += a[j]; suff[i] = x * y; } } let l = 0, ans = 0; // Loop to calculate the maximum product of sums for (let i = 0; i + 2 < n; i++) { l += a[i]; ans = Math.max(ans, l * suff[i + 1]); } return ans; } // Driver code let A = [1, 2, 2, 3]; let N = A.length; // Function call console.log(subarrayProduct(N, A) + "<br>" ); // This code is contributed by Potta Lokesh |
18
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!