Friday, January 10, 2025
Google search engine
HomeData Modelling & AIPrint all Prime Quadruplet of a number less than it

Print all Prime Quadruplet of a number less than it

Given a positive integer n, print every Prime Quadruplet below n   .
Prime quadruplet: In mathematics, Prime Quadruplet is a set of four primes of the form {p, p+2, p+6, p+8 }.
Example : 
 

Input : N = 15
Output : 5  7  11  13
                           
Input : N = 20
Output :  5  7  11  13
           11 13 17  19

 

A Simple solution to generate all Prime quadruplets up to n is to traverse all positive integer ‘i’ from i=1 to n and check if i, i+2, i+6 and i+8 are primes or not.
An Efficient Solution is to use Sieve Of Eratosthenes to pre-compute all prime numbers in an array in the certain range. 
Approach
 

  1. Pre-Compute Prime numbers using Sieve Of Eratosthenes ( refer this )
  2. Traverse from i=0 to n-7 and check if i, i+2, i+6 and i+8 are also prime or not. 
  3. If yes, Then print i, i+2, i+6, i+8, 
    Otherwise increment i and check again

Below is the implementation of above idea: 
 

C++




// CPP Program to print prime quadruplet
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 100000
 
bool prime[MAX];
 
// Utility function to generate prime numbers
void sieve()
{
    // Sieve Of Eratosthenes for generating
    // prime number.
    memset(prime, true, sizeof(prime));
 
    for (int p = 2; p * p < MAX; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to print Prime quadruplet
void printPrimeQuad(int n)
{
 
    for (int i = 0; i < n - 7; i++) {
 
        if (prime[i] && prime[i + 2] && prime[i + 6]
            && prime[i + 8]) {
 
            cout << i << " " << i + 2 << " " << i + 6
                 << " " << i + 8 << "\n";
        }
    }
}
 
// Driver Code
int main()
{
    sieve();
    int n = 20;
 
    printPrimeQuad(20);
 
    return 0;
}


Java




// Java code to print prime Quarduplet in a range
import java.util.Arrays;
import java.util.Collections;
 
class GFG {
 
    static final int MAX = 1000000;
    static boolean[] prime = new boolean[MAX];
 
    // utility function to generate prime number
    public static void sieve()
    {
        // Sieve Of Eratosthenes for generating
        // prime number.
 
        // memset(prime, true, sizeof(prime));
        Arrays.fill(prime, true);
 
        for (int p = 2; p * p < MAX; p++) {
 
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true) {
 
                // Update all multiples of p
                for (int i = p * 2; i < MAX; i += p)
                    prime[i] = false;
            }
        }
    }
 
    // function to print prime Quadruplet
    static void printPrimeQuad(int n)
    {
        for (int i = 0; i < n - 7; i++) {
 
            if (prime[i] && prime[i + 2] && prime[i + 6]
                && prime[i + 8]) {
 
                System.out.println(i + " " + (i + 2) + " "
                                   + (i + 6) + " " + (i + 8));
            }
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 20;
 
        sieve();
 
        printPrimeQuad(n);
    }
}


Python3




# Python3 Program to print
# prime quadruplet
 
# from math lib import sqrt method
from math import sqrt
 
MAX = 100000
 
# Sieve Of Eratosthenes for generating
# prime number.
prime = [True] * MAX
 
# Utility function to generate
# prime numbers
def sieve() :
 
    for p in range(2, int(sqrt(MAX)) + 1) :
 
        # If prime[p] is not changed,
        # then it is a prime
        if prime[p] == True :
 
            # Update all multiples of p
            for i in range(p * 2 , MAX, p) :
                prime[i] = False
                 
     
# Function to print Prime quadruplet
def printPrimeQuad(n) :
 
    for i in range(n - 7) :
         
        if ( prime[i] and prime[i + 2] and prime[i + 6]
            and prime[i + 8]) :
 
            print(i,i + 2,i + 6,i + 8)
             
         
# Driver code
if __name__ == "__main__" :
     
    sieve()
    n = 20
 
    printPrimeQuad(20)
     
# This code is contributed by
# ANKITRAI1


C#




// C# code to print prime Quarduplet in a range
 
using System;
 
class GFG {
  
     const int MAX = 1000000;
    static bool[] prime = new bool[MAX];
  
    // utility function to generate prime number
    public static void sieve()
    {
        // Sieve Of Eratosthenes for generating
        // prime number.
  
        // memset(prime, true, sizeof(prime));
        for(int i=0;i<MAX;i++) prime[i]=true;
  
        for (int p = 2; p * p < MAX; p++) {
  
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p] == true) {
  
                // Update all multiples of p
                for (int i = p * 2; i < MAX; i += p)
                    prime[i] = false;
            }
        }
    }
  
    // function to print prime Quadruplet
    static void printPrimeQuad(int n)
    {
        for (int i = 0; i < n - 7; i++) {
  
            if (prime[i] && prime[i + 2] && prime[i + 6]
                && prime[i + 8]) {
  
                Console.WriteLine(i + " " + (i + 2) + " "
                                   + (i + 6) + " " + (i + 8));
            }
        }
    }
  
    // Driver Code
    public static void Main()
    {
        int n = 20;
  
        sieve();
  
        printPrimeQuad(n);
    }
}


PHP




<?php
// PHP Program to print prime quadruplet
$MAX = 100000;
 
// Sieve Of Eratosthenes for generating
// prime number.
$prime = array_fill(0, $MAX, true);
 
// Utility function to generate
// prime numbers
function sieve()
{
    global $MAX, $prime;
 
    for ($p = 2; $p * $p < $MAX; $p++)
    {
 
        // If prime[p] is not changed,
        // then it is a prime
        if ($prime[$p] == true)
        {
 
            // Update all multiples of p
            for ($i = $p * 2; $i < $MAX; $i += $p)
                $prime[$i] = false;
        }
    }
}
 
// Function to print Prime quadruplet
function printPrimeQuad($n)
{
    global $MAX, $prime;
    for ($i = 0; $i < $n - 7; $i++)
    {
 
        if ($prime[$i] && $prime[$i + 2] &&
            $prime[$i + 6] && $prime[$i + 8])
        {
 
            echo $i . " " . ($i + 2) . " " .
                ($i + 6) . " " . ($i + 8) . "\n";
        }
    }
}
 
// Driver Code
sieve();
$n = 20;
 
printPrimeQuad(20);
 
// This code is contributed by mits
?>


Javascript




<script>
 
// Javascript Program to print prime quadruplet
 
var MAX = 100000;
 
var prime = Array(MAX).fill(true);
 
// Utility function to generate prime numbers
function sieve()
{
    // Sieve Of Eratosthenes for generating
    // prime number.
 
    for (var p = 2; p * p < MAX; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (var i = p * 2; i < MAX; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to print Prime quadruplet
function printPrimeQuad(n)
{
 
    for (var i = 0; i < n - 7; i++) {
 
        if (prime[i] && prime[i + 2] && prime[i + 6]
            && prime[i + 8]) {
 
            document.write( i + " " + (i + 2) + " "
            + (i + 6) + " " + (i + 8) + "<br>");
        }
    }
}
 
// Driver Code
sieve();
var n = 20;
printPrimeQuad(20);
 
</script>


Output: 

5 7 11 13
11 13 17 19

 

Time Complexity: O(n * (MAX)3/2)

Auxiliary Space: O(MAX)

See Also: 
 

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments