Given a number N, the task is to find the nth term of the series
5, 2, 19, 13, 41, 31, 71, 57….
It is given that value of n can range between 1 and 10000.
Examples:
Input: N = 4
Output:13Input: N = 15
Output:272
Approach: The problem looks very hard but approach is very simple. If the value of n is given as an odd number, the nth term will be ( ( n + 1 ) ^ 2 ) + n.
Otherwise, it will be ( ( n – 1 ) ^ 2 ) + n.
Implementation:
C++
// C++ program to find nth term of // the series 5 2 13 41 #include<bits/stdc++.h> using namespace std; // function to calculate nth term of the series int nthTermOfTheSeries( int n) { // to store the nth term of series int nthTerm; // if n is even number if (n % 2 == 0) nthTerm = pow (n - 1, 2) + n; // if n is odd number else nthTerm = pow (n + 1, 2) + n; // return nth term return nthTerm; } // Driver code int main() { int n; n = 8; cout << nthTermOfTheSeries(n) << endl; n = 12; cout << nthTermOfTheSeries(n) << endl; n = 102; cout << nthTermOfTheSeries(n) << endl; n = 999; cout << nthTermOfTheSeries(n) << endl; n = 9999; cout << nthTermOfTheSeries(n) << endl; return 0; } // This code is contributed // by Akanksha Rai |
C
// C program to find nth term of // the series 5 2 13 41 #include <math.h> #include <stdio.h> // function to calculate nth term of the series int nthTermOfTheSeries( int n) { // to store the nth term of series int nthTerm; // if n is even number if (n % 2 == 0) nthTerm = pow (n - 1, 2) + n; // if n is odd number else nthTerm = pow (n + 1, 2) + n; // return nth term return nthTerm; } // Driver code int main() { int n; n = 8; printf ( "%d\n" , nthTermOfTheSeries(n)); n = 12; printf ( "%d\n" , nthTermOfTheSeries(n)); n = 102; printf ( "%d\n" , nthTermOfTheSeries(n)); n = 999; printf ( "%d\n" , nthTermOfTheSeries(n)); n = 9999; printf ( "%d\n" , nthTermOfTheSeries(n)); return 0; } |
Java
// Java program to find nth term of the series 5 2 13 41 import java.lang.Math; class GFG { // function to calculate nth term of the series static long nthTermOfTheSeries( int n) { // to store the nth term of series long nthTerm; // if n is even number if (n % 2 == 0 ) nthTerm = ( long )Math.pow(n - 1 , 2 ) + n; // if n is odd number else nthTerm = ( long )Math.pow(n + 1 , 2 ) + n; // return nth term return nthTerm; } // Driver code public static void main(String[] args) { int n; n = 8 ; System.out.println( nthTermOfTheSeries(n)); n = 12 ; System.out.println( nthTermOfTheSeries(n)); n = 102 ; System.out.println( nthTermOfTheSeries(n)); n = 999 ; System.out.println( nthTermOfTheSeries(n)); n = 9999 ; System.out.println( nthTermOfTheSeries(n)); //This code is contributed by 29AjayKumar } } |
Python3
# Python3 program to find nth term # of the series 5 2 13 41 from math import pow # function to calculate nth term # of the series def nthTermOfTheSeries(n): # to store the nth term of series # if n is even number if (n % 2 = = 0 ): nthTerm = pow (n - 1 , 2 ) + n # if n is odd number else : nthTerm = pow (n + 1 , 2 ) + n # return nth term return nthTerm # Driver code if __name__ = = '__main__' : n = 8 print ( int (nthTermOfTheSeries(n))) n = 12 print ( int (nthTermOfTheSeries(n))) n = 102 print ( int (nthTermOfTheSeries(n))) n = 999 print ( int (nthTermOfTheSeries(n))) n = 9999 print ( int (nthTermOfTheSeries(n))) # This code is contributed by # Shashank_Sharma |
C#
// C# program to find nth term // of the series 5 2 13 41 using System; class GFG { // function to calculate // nth term of the series static long nthTermOfTheSeries( int n) { // to store the nth term of series long nthTerm; // if n is even number if (n % 2 == 0) nthTerm = ( long )Math.Pow(n - 1, 2) + n; // if n is odd number else nthTerm = ( long )Math.Pow(n + 1, 2) + n; // return nth term return nthTerm; } // Driver code public static void Main() { int n; n = 8; Console.WriteLine(nthTermOfTheSeries(n)); n = 12; Console.WriteLine( nthTermOfTheSeries(n)); n = 102; Console.WriteLine( nthTermOfTheSeries(n)); n = 999; Console.WriteLine( nthTermOfTheSeries(n)); n = 9999; Console.WriteLine( nthTermOfTheSeries(n)); } } // This code is contributed by Ryuga |
PHP
<?php // Php program to find nth term of // the series 5 2 13 41 // function to calculate nth term // of the series function nthTermOfTheSeries( $n ) { // if n is even number if ( $n % 2 == 0) $nthTerm = pow( $n - 1, 2) + $n ; // if n is odd number else $nthTerm = pow( $n + 1, 2) + $n ; // return nth term return $nthTerm ; } // Driver code $n = 8; echo nthTermOfTheSeries( $n ) . "\n" ; $n = 12; echo nthTermOfTheSeries( $n ) . "\n" ; $n = 102; echo nthTermOfTheSeries( $n ) . "\n" ; $n = 999; echo nthTermOfTheSeries( $n ) . "\n" ; $n = 9999; echo nthTermOfTheSeries( $n ) . "\n" ; // This code is contributed by ita_c ?> |
Javascript
<script> // Javascript program to find nth term of // the series 5 2 13 41 // function to calculate nth term of the series function nthTermOfTheSeries(n) { // to store the nth term of series let nthTerm; // if n is even number if (n % 2 == 0) nthTerm = Math.pow(n - 1, 2) + n; // if n is odd number else nthTerm = Math.pow(n + 1, 2) + n; // return nth term return nthTerm; } // Driver code let n; n = 8; document.write(nthTermOfTheSeries(n) + "<br>" ); n = 12; document.write(nthTermOfTheSeries(n) + "<br>" ); n = 102; document.write(nthTermOfTheSeries(n) + "<br>" ); n = 999; document.write(nthTermOfTheSeries(n) + "<br>" ); n = 9999; document.write(nthTermOfTheSeries(n) + "<br>" ); // This code is contributed by rishavmahato348. </script> |
57 133 10303 1000999 100009999
Time Complexity: O(1) as it is doing constant operations
Auxiliary Space: O(1) since no extra array is used space taken by this algorithm is constant
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!