Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind nth term of the series 5 2 13 41

Find nth term of the series 5 2 13 41

Given a number N, the task is to find the nth term of the series 
 

5, 2, 19, 13, 41, 31, 71, 57….

 
It is given that value of n can range between 1 and 10000. 
Examples: 
 

Input: N = 4
Output:13

Input: N = 15
Output:272

Approach: The problem looks very hard but approach is very simple. If the value of n is given as an odd number, the nth term will be ( ( n + 1 ) ^ 2 ) + n. 
Otherwise, it will be ( ( n – 1 ) ^ 2 ) + n.
 

Implementation:
 

C++




// C++ program to find nth term of
// the series 5 2 13 41
#include<bits/stdc++.h>
using namespace std;
 
// function to calculate nth term of the series
int nthTermOfTheSeries(int n)
{
    // to store the nth term of series
    int nthTerm;
 
    // if n is even number
    if (n % 2 == 0)
        nthTerm = pow(n - 1, 2) + n;
 
    // if n is odd number
    else
        nthTerm = pow(n + 1, 2) + n;
 
    // return nth term
    return nthTerm;
}
 
// Driver code
int main()
{
    int n;
 
    n = 8;
    cout << nthTermOfTheSeries(n) << endl;
 
    n = 12;
    cout << nthTermOfTheSeries(n) << endl;
 
    n = 102;
    cout << nthTermOfTheSeries(n) << endl;
 
    n = 999;
    cout << nthTermOfTheSeries(n) << endl;
 
    n = 9999;
    cout << nthTermOfTheSeries(n) << endl;
 
    return 0;
}
 
// This code is contributed
// by Akanksha Rai


C




// C program to find nth term of
// the series 5 2 13 41
#include <math.h>
#include <stdio.h>
 
// function to calculate nth term of the series
int nthTermOfTheSeries(int n)
{
    // to store the nth term of series
    int nthTerm;
 
    // if n is even number
    if (n % 2 == 0)
        nthTerm = pow(n - 1, 2) + n;
 
    // if n is odd number
    else
        nthTerm = pow(n + 1, 2) + n;
 
    // return nth term
    return nthTerm;
}
 
// Driver code
int main()
{
    int n;
 
    n = 8;
 
    printf("%d\n", nthTermOfTheSeries(n));
 
    n = 12;
    printf("%d\n", nthTermOfTheSeries(n));
 
    n = 102;
    printf("%d\n", nthTermOfTheSeries(n));
 
    n = 999;
    printf("%d\n", nthTermOfTheSeries(n));
 
    n = 9999;
    printf("%d\n", nthTermOfTheSeries(n));
 
    return 0;
}


Java




// Java program to find nth term of the series 5 2 13 41
 
import java.lang.Math;
class GFG
{
// function to calculate nth term of the series
static long  nthTermOfTheSeries(int n)
{
    // to store the nth term of series
    long nthTerm;
 
    // if n is even number
    if (n % 2 == 0)
        nthTerm = (long)Math.pow(n - 1, 2) + n;
 
    // if n is odd number
    else
        nthTerm = (long)Math.pow(n + 1, 2) + n;
 
    // return nth term
    return nthTerm;
}
 
// Driver code
public static void main(String[] args)
{
    int n;
 
    n = 8;
 
    System.out.println( nthTermOfTheSeries(n));
 
    n = 12;
    System.out.println( nthTermOfTheSeries(n));
 
    n = 102;
    System.out.println( nthTermOfTheSeries(n));
 
    n = 999;
    System.out.println( nthTermOfTheSeries(n));
     
    n = 9999;
    System.out.println( nthTermOfTheSeries(n));
//This code is contributed by  29AjayKumar
 
}
}


Python3




# Python3 program to find nth term
# of the series 5 2 13 41
from math import pow
 
# function to calculate nth term
# of the series
def nthTermOfTheSeries(n):
     
    # to store the nth term of series
    # if n is even number
    if (n % 2 == 0):
        nthTerm = pow(n - 1, 2) + n
 
    # if n is odd number
    else:
        nthTerm = pow(n + 1, 2) + n
 
    # return nth term
    return nthTerm
 
# Driver code
if __name__ == '__main__':
     
    n = 8
    print(int(nthTermOfTheSeries(n)))
 
    n = 12
    print(int(nthTermOfTheSeries(n)))
 
    n = 102
    print(int(nthTermOfTheSeries(n)))
 
    n = 999
    print(int(nthTermOfTheSeries(n)))
 
    n = 9999
    print(int(nthTermOfTheSeries(n)))
 
# This code is contributed by
# Shashank_Sharma


C#




// C# program to find nth term
// of the series 5 2 13 41
using System;
 
class GFG
{
    // function to calculate
    // nth term of the series
    static long nthTermOfTheSeries(int n)
    {
        // to store the nth term of series
        long nthTerm;
     
        // if n is even number
        if (n % 2 == 0)
            nthTerm = (long)Math.Pow(n - 1, 2) + n;
     
        // if n is odd number
        else
            nthTerm = (long)Math.Pow(n + 1, 2) + n;
     
        // return nth term
        return nthTerm;
    }
     
    // Driver code
    public static void Main()
    {
        int n;
     
        n = 8;
        Console.WriteLine(nthTermOfTheSeries(n));
     
        n = 12;
        Console.WriteLine( nthTermOfTheSeries(n));
     
        n = 102;
        Console.WriteLine( nthTermOfTheSeries(n));
     
        n = 999;
        Console.WriteLine( nthTermOfTheSeries(n));
         
        n = 9999;
        Console.WriteLine( nthTermOfTheSeries(n));
    }
}
 
// This code is contributed by Ryuga


PHP




<?php
// Php program to find nth term of
// the series 5 2 13 41
 
// function to calculate nth term
// of the series
function nthTermOfTheSeries($n)
{
 
    // if n is even number
    if ($n % 2 == 0)
        $nthTerm = pow($n - 1, 2) + $n;
 
    // if n is odd number
    else
        $nthTerm = pow($n + 1, 2) + $n;
 
    // return nth term
    return $nthTerm;
}
 
// Driver code
$n = 8;
echo nthTermOfTheSeries($n) . "\n";
 
$n = 12;
echo nthTermOfTheSeries($n) . "\n";
 
$n = 102;
echo nthTermOfTheSeries($n) . "\n";
 
$n = 999;
echo nthTermOfTheSeries($n) . "\n";
 
$n = 9999;
echo nthTermOfTheSeries($n) . "\n";
 
// This code is contributed by ita_c
?>


Javascript




<script>
// Javascript program to find nth term of
// the series 5 2 13 41
 
// function to calculate nth term of the series
function nthTermOfTheSeries(n)
{
    // to store the nth term of series
    let nthTerm;
 
    // if n is even number
    if (n % 2 == 0)
        nthTerm = Math.pow(n - 1, 2) + n;
 
    // if n is odd number
    else
        nthTerm = Math.pow(n + 1, 2) + n;
 
    // return nth term
    return nthTerm;
}
 
// Driver code
let n;
 
n = 8;
document.write(nthTermOfTheSeries(n) + "<br>");
 
n = 12;
document.write(nthTermOfTheSeries(n) + "<br>");
 
n = 102;
document.write(nthTermOfTheSeries(n) + "<br>");
 
n = 999;
document.write(nthTermOfTheSeries(n) + "<br>");
 
n = 9999;
document.write(nthTermOfTheSeries(n) + "<br>");
 
// This code is contributed by rishavmahato348.
</script>


Output: 

57
133
10303
1000999
100009999

 

Time Complexity: O(1) as it is doing constant operations
Auxiliary Space: O(1) since no extra array is used space taken by this algorithm is constant

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments