Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIFind all possible triangles with XOR of sides zero

Find all possible triangles with XOR of sides zero

Given an integer N, we need to find three integers(X, Y, Z) which can form a triangle with the following conditions: 
 

  • Lengths of sides are integers not exceeding N.
  • XOR of three sides is 0, i.e., X ^ Y ^ Z = 0
  • Area of triangle is greater than 0.

Find all the possible triples which satisfy the above conditions. 
Examples: 
 

Input:  6
Output: 6 5 3 

Input:  10
Output: 10 9 3
        6 5 3

 

Naive Approach: Select the first side by iterating from N to 1 and then select the second side by iterating from the first side to 1 and then select third side by iterating from second side to 1. Now check if the three sides can make a triangle(sum of the two smaller sides must be greater than the longest side) and the xor-sum of lengths is equal to 0. 
Time Complexity = O(n^3).
Efficient Approach: In this method we select the first two sides as we did in the first approach, the third side will be equal to the xor of the first two sides(this will make the xor-sum of lengths is equal to 0)and this side must be smaller than the first two sides. Now check if these sides can make a triangle. 
Time Complexity = O(n^2) 
 

C++




// C++ implementation to find all possible 
// triangles with XOR of sides zero
#include <bits/stdc++.h>
using namespace std;
  
// function to find all triples which
// satisfy the necessary condition
void find_all_possible_sides(int n) {
  
  // selects first side
  for (int x = n; x > 0; x--) {
  
    // select second side
    for (int y = x - 1; y >= 0; y--) {
  
      // third side is equal to xor of
      // first and second side
      int z = x ^ y;
      if (z < x && z < y) {
  
        // find longest side
        int max_side = max(x, max(y, z));
  
        // check if it can make a triangle
        if (x + y + z - max_side > max_side) {
           cout << x << " " << y << " " 
                << z << endl;
        }
      }
    }
}
  
}
  
// Driver Program
int main() {
  int n = 10;
  find_all_possible_sides(n);
  return 0;
}


Java




// Java implementation to find all possible 
// triangles with XOR of sides zero
import java.lang.*;
  
class GFG {
      
// function to find all triples which
// satisfy the necessary condition
static void find_all_possible_sides(int n) {
      
    // selects first side
    for (int x = n; x > 0; x--) {
  
    // select second side
    for (int y = x - 1; y >= 0; y--) {
  
        // third side is equal to xor of
        // first and second side
        int z = x ^ y;
        if (z < x && z < y) {
  
        // find longest side
        int max_side = Math.max(x, Math.max(y, z));
  
        // check if it can make a triangle
        if (x + y + z - max_side > max_side) {
            System.out.println(x + " " + y + " " + z);
        }
        }
    }
    }
}
  
// Driver code
public static void main(String[] args) {
      
    int n = 10;
    find_all_possible_sides(n);
}
}
  
// This code is contributed by Anant Agarwal.


Python3




# function to find
# all triples which
# satisfy the necessary condition
def find_all_possible_sides(n):
      
    # selects first side
    for x in range(n,0,-1):
  
        # select second side
        for y in range(x - 1,-1,-1): 
      
            # third side is equal to xor of
            # first and second side
            z = x ^ y
            if (z < x and z < y):
             
                # find longest side
                max_side =max(x,max(y, z))
  
                # check if it can make a triangle
                if (x + y + z - max_side > max_side):
          
                    print(x , " " , y , " ",
                                z)
                                  
# driver code                                
  
n = 10
find_all_possible_sides(n)
  
# This code is contributed
# by Anant Agarwal.


C#




// C# implementation to find all possible 
// triangles with XOR of sides zero
using System;
  
class GFG {
      
    // function to find all triples which
    // satisfy the necessary condition
    static void find_all_possible_sides(int n) {
          
        // selects first side
        for (int x = n; x > 0; x--) {
      
            // select second side
            for (int y = x - 1; y >= 0; y--) {
          
                // third side is equal to xor of
                // first and second side
                int z = x ^ y;
                if (z < x && z < y) {
          
                    // find longest side
                    int max_side = Math.Max(x,
                                 Math.Max(y, z));
              
                    // check if it can make a
                    // triangle
                    if (x + y + z - max_side > 
                                     max_side) {
                                           
                        Console.WriteLine(x + " " 
                                  + y + " " + z);
                    }
                }
            }
        }
    }
      
    // Driver code
    public static void Main() {
          
        int n = 10;
          
        find_all_possible_sides(n);
    }
}
  
// This code is contributed by vt_m.


PHP




<?php
// PHP implementation to find all possible 
// triangles with XOR of sides zero
  
// function to find all triples which
// satisfy the necessary condition
function find_all_possible_sides($n) {
  
// selects first side
for ($x = $n; $x > 0; $x--) {
  
    // select second side
    for ($y = $x - 1; $y >= 0; $y--) {
  
    // third side is equal to xor of
    // first and second side
    $z = $x ^ $y;
    if ($z < $x && $z < $y) {
  
        // find longest side
        $max_side = max($x, max($y, $z));
  
        // check if it can make a triangle
        if ($x + $y + $z - $max_side > $max_side
        {
              echo $x , " " ,$y , " ",
                   $z ,"\n" ;
        }
    }
    }
}
  
}
  
// Driver Code
$n = 10;
find_all_possible_sides($n);
  
// This code is contributed by anuj_67
?>


Javascript




<script>
// Javascript implementation to find all possible 
// triangles with XOR of sides zero
  
// function to find all triples which
// satisfy the necessary condition
function find_all_possible_sides(n) {
  
  // selects first side
  for (let x = n; x > 0; x--) {
  
    // select second side
    for (let y = x - 1; y >= 0; y--) {
  
      // third side is equal to xor of
      // first and second side
      let z = x ^ y;
      if (z < x && z < y) {
  
        // find longest side
        let max_side = Math.max(x, Math.max(y, z));
  
        // check if it can make a triangle
        if (x + y + z - max_side > max_side) {
           document.write(x + " " + y + " " 
                + z + "<br>");
        }
      }
    }
}
  
}
  
// Driver Program
  let n = 10;
  find_all_possible_sides(n);
  
</script>


Output: 
 

10 9 3
6 5 3

Time complexity: O(n^2) for given input n

Auxiliary space: O(1) it is using constant space
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments