Saturday, January 11, 2025
Google search engine
HomeData Modelling & AILexicographically Kth-smallest string having ‘a’ X times and ‘b’ Y times

Lexicographically Kth-smallest string having ‘a’ X times and ‘b’ Y times

Given three non-negative integers, X, Y, and K, the task is to find the Kth smallest lexicographical string having X occurrences of character ‘a’ and Y occurrences of character ‘b’.

Examples:

Input: X = 2, Y = 3, K = 3
Output: abbab
Explanation: 
First lexicographical smallest string = “aabbb”.
Second lexicographical smallest string = “ababb”.
Third lexicographical smallest string = “abbab”.

Input: X = 4, Y = 3, K = 4
Output: aaabbba

Naive Approach: The simplest approach is to generate all distinct permutations of the string X occurrences of character ‘a’ and Y occurrences of character ‘b’. Then first, sort the output string array in lexicographical order and print the Kth index string

Time complexity: O(N*N!), where N is (X + Y)
Auxiliary Space: O(N!)

Efficient Approach: This problem has Overlapping Subproblems property and Optimal Substructure property. So this problem can be solved using Dynamic Programming. Like other typical Dynamic Programming(DP) problems, recomputation of the same subproblems can be avoided by constructing a temporary array that stores the results of subproblems. Follow the steps below to solve this problem.

  • Initialize a 2D array, dp[][] where dp[i][j] denotes the number of strings containing i number of a’s, and j number of b’s.
  • Iterate in the range [0, X] using the variable i: 
    • Iterate in the range [0, Y] using the variable j:
      • If i is greater than 0, then update dp[i][j] to dp[i][j] + dp[i-1][j].
      • If j is greater than 0, then update dp[i][j] to dp[i][j] + dp[i][j-1].
  • Now, recursively find the Kth lexicographical smallest string by calling the function kthString(int X, int Y, int K).
  • Handle the base cases:
    • If there are only ‘a’ characters present then return a string of all ‘a’ characters.
    • If there are only ‘b’ characters present then return a string of all ‘b’ characters.
  • If there are more than or equal to K strings that start with ‘a’, then return “a” + kthString(X-1, Y, K).
  • Else the first character of the resultant string is ‘b’, return “b” + kthString(X, Y-1, K – dp[X-1][Y]).

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 30;
 
// Function to fill dp array
void findNumString(int X, int Y, int dp[][MAX])
{
 
    // Initialize all the entries with 0
    for (int i = 0; i < MAX; i++) {
        for (int j = 0; j < MAX; j++) {
            dp[i][j] = 0;
        }
    }
 
    // Update dp[0][0] to 1
    dp[0][0] = 1;
 
    // Traverse the dp array
    for (int i = 0; i <= X; ++i) {
        for (int j = 0; j <= Y; ++j) {
 
            // Update the value of dp[i][j]
            if (i > 0) {
                dp[i][j] += dp[i - 1][j];
            }
 
            if (j > 0) {
                dp[i][j] += dp[i][j - 1];
            }
        }
    }
}
 
// Recursive function to find the Kth
// lexicographical smallest string
string kthString(int X, int Y, int K, int dp[][MAX])
{
    // Handle the base cases
    if (X == 0) {
        return string(Y, 'b');
    }
    if (Y == 0) {
        return string(X, 'a');
    }
 
    // If there are more than or equal
    // to K strings which start with a,
    // then the first character is 'a'
    if (K <= dp[X - 1][Y]) {
        return string("a") + kthString(X - 1, Y, K, dp);
    }
 
    // Otherwise the first character
    // of the resultant string is 'b'
    else {
        return string("b")
               + kthString(X, Y - 1,
                           K - dp[X - 1][Y], dp);
    }
}
 
// Function to find the Kth
// lexicographical smallest string
void kthStringUtil(int X, int Y, int K)
{
    int dp[MAX][MAX];
 
    // Function call to fill the dp array
    findNumString(X, Y, dp);
 
    // Print the resultant string
    cout << kthString(X, Y, K, dp) << '\n';
}
 
// Driver Code
int main()
{
 
    // Given Input
    int X = 4;
    int Y = 3;
    int K = 4;
 
    // Function Call
    kthStringUtil(X, Y, K);
 
    return 0;
}


Java




// Java program for the above approach
public class GFG
{
 
static int MAX = 30;
 
// Function to fill dp array
static void findNumString(int X, int Y, int dp[][])
{
 
    // Initialize all the entries with 0
    for (int i = 0; i < MAX; i++) {
        for (int j = 0; j < MAX; j++) {
            dp[i][j] = 0;
        }
    }
 
    // Update dp[0][0] to 1
    dp[0][0] = 1;
 
    // Traverse the dp array
    for (int i = 0; i <= X; ++i) {
        for (int j = 0; j <= Y; ++j) {
 
            // Update the value of dp[i][j]
            if (i > 0) {
                dp[i][j] += dp[i - 1][j];
            }
 
            if (j > 0) {
                dp[i][j] += dp[i][j - 1];
            }
        }
    }
}
 
// Recursive function to find the Kth
// lexicographical smallest string
static String kthString(int X, int Y, int K, int dp[][])
{
    // Handle the base cases
    String x1 = "";
    String y1 = "";
     
    for (int i=0;i<Y;i++){
        x1 += 'b';
    }
    for (int i=0;i<X;i++){
        y1 += 'a';
    }
    if (X == 0)
        return x1;
    if (Y == 0)
        return y1;
 
    // If there are more than or equal
    // to K strings which start with a,
    // then the first character is 'a'
    if (K <= dp[X - 1][Y]) {
        return ("a" + kthString(X - 1, Y, K, dp));
    }
 
    // Otherwise the first character
    // of the resultant string is 'b'
    else {
        return ("b"  + kthString(X, Y - 1, K - dp[X - 1][Y], dp));
    }
}
 
// Function to find the Kth
// lexicographical smallest string
static void kthStringUtil(int X, int Y, int K)
{
    int dp[][] = new int [MAX][MAX];
 
    // Function call to fill the dp array
    findNumString(X, Y, dp);
 
    // Print the resultant string
    System.out.println(kthString(X, Y, K, dp));
}
 
// Driver Code
public static void main(String args[])
{
 
    // Given Input
    int X = 4;
    int Y = 3;
    int K = 4;
 
    // Function Call
    kthStringUtil(X, Y, K);
    }
}
 
// This code is contributed by SoumikMondal


Python3




# Python3 program for the above approach
from typing import Mapping
 
MAX = 30
 
# Function to fill dp array
def findNumString(X, Y, dp):
     
    # Initialize all the entries with 0
    for i in range(0, MAX):
        for j in range(0, MAX):
            dp[i][j] = 0
 
    # Update dp[0][0] to 1
    dp[0][0] = 1
     
    # Traverse the dp array
    for i in range(0, X + 1):
        for j in range(0, Y + 1):
 
            # Update the value of dp[i][j]
            if (i > 0):
                dp[i][j] += dp[i - 1][j]
 
            if (j > 0):
                dp[i][j] += dp[i][j - 1]
 
# Recursive function to find the Kth
# lexicographical smallest string
def kthString(X, Y, K, dp):
     
    # Handle the base cases
    x1 = ""
    y1 = ""
     
    for i in range(0, Y):
        x1 += 'b'
    for i in range(0, X):
        y1 += 'a'
         
    if (X == 0):
        return x1
    if (Y == 0):
        return y1
 
    # If there are more than or equal
    # to K strings which start with a,
    # then the first character is 'a'
    if (K <= dp[X - 1][Y]):
        return "a" + kthString(X - 1, Y, K, dp)
 
    # Otherwise the first character
    # of the resultant string is 'b'
    else:
        return "b" + kthString(X, Y - 1,
                           K - dp[X - 1][Y], dp)
 
# Function to find the Kth
# lexicographical smallest string
def kthStringUtil(X, Y, K):
     
    dp = [[0 for i in range(MAX)]
             for col in range(MAX)]
              
    # Function call to fill the dp array
    findNumString(X, Y, dp)
     
    # Print the resultant
    print(kthString(X, Y, K, dp))
 
# Driver Code
 
# Given Input
X = 4
Y = 3
K = 4
 
# Function Call
kthStringUtil(X, Y, K)
 
# This code is contributed by amreshkumar3


C#




// C# program for the above approach
using System;
 
class GFG{
     
static int MAX = 30;
 
// Function to fill dp array
static void findNumString(int X, int Y, int[,] dp)
{
 
    // Initialize all the entries with 0
    for (int i = 0; i < MAX; i++) {
        for (int j = 0; j < MAX; j++) {
            dp[i, j] = 0;
        }
    }
 
    // Update dp[0][0] to 1
    dp[0, 0] = 1;
 
    // Traverse the dp array
    for (int i = 0; i <= X; ++i) {
        for (int j = 0; j <= Y; ++j) {
 
            // Update the value of dp[i][j]
            if (i > 0) {
                dp[i, j] += dp[i - 1, j];
            }
 
            if (j > 0) {
                dp[i, j] += dp[i, j - 1];
            }
        }
    }
}
 
// Recursive function to find the Kth
// lexicographical smallest string
static string kthString(int X, int Y, int K, int[,] dp)
{
    // Handle the base cases
    string x1 = "";
    string y1 = "";
     
    for (int i=0;i<Y;i++){
        x1 += 'b';
    }
    for (int i=0;i<X;i++){
        y1 += 'a';
    }
    if (X == 0)
        return x1;
    if (Y == 0)
        return y1;
 
    // If there are more than or equal
    // to K strings which start with a,
    // then the first character is 'a'
    if (K <= dp[X - 1, Y]) {
        return ("a" + kthString(X - 1, Y, K, dp));
    }
 
    // Otherwise the first character
    // of the resultant string is 'b'
    else {
        return ("b"  + kthString(X, Y - 1, K - dp[X - 1, Y], dp));
    }
}
 
// Function to find the Kth
// lexicographical smallest string
static void kthStringUtil(int X, int Y, int K)
{
    int[,] dp = new int [MAX, MAX];
 
    // Function call to fill the dp array
    findNumString(X, Y, dp);
 
    // Print the resultant string
    Console.WriteLine(kthString(X, Y, K, dp));
}
 
// Driver code
static void Main()
{
    // Given Input
    int X = 4;
    int Y = 3;
    int K = 4;
 
    // Function Call
    kthStringUtil(X, Y, K);
}
}
 
// This code is contributed by code_hunt.


Javascript




<script>
 
// JavaScript program for the above approach
const MAX = 30
 
// Function to fill dp array
function findNumString(X, Y, dp){
     
    // Initialize all the entries with 0
    for(let i = 0; i < MAX; i++)
        for(let j = 0; j < MAX; j++)
            dp[i][j] = 0
 
    // Update dp[0][0] to 1
    dp[0][0] = 1
     
    // Traverse the dp array
    for(let i = 0; i < X + 1; i++)
    {
        for(let j = 0; j < Y + 1; j++)
        {
 
            // Update the value of dp[i][j]
            if (i > 0)
                dp[i][j] += dp[i - 1][j]
 
            if (j > 0)
                dp[i][j] += dp[i][j - 1]
        }
    }
}
 
// Recursive function to find the Kth
// lexicographical smallest string
function kthString(X, Y, K, dp){
 
    // Handle the base cases
    let x1 = ""
    let y1 = ""
     
    for(let i = 0; i < Y; i++)
        x1 += 'b'
    for(let i = 0; i < X; i++)
        y1 += 'a'
         
    if (X == 0)
        return x1
    if (Y == 0)
        return y1
 
    // If there are more than or equal
    // to K strings which start with a,
    // then the first character is 'a'
    if (K <= dp[X - 1][Y])
        return "a" + kthString(X - 1, Y, K, dp)
 
    // Otherwise the first character
    // of the resultant string is 'b'
    else
        return "b" + kthString(X, Y - 1,
                        K - dp[X - 1][Y], dp)
}
 
// Function to find the Kth
// lexicographical smallest string
function kthStringUtil(X, Y, K)
{
     
    let dp = new Array(MAX);
    for(let i = 0; i < MAX; i++)
    {
        dp[i] = new Array(MAX);
    }
             
    // Function call to fill the dp array
    findNumString(X, Y, dp)
     
    // Print the resultant
    document.write(kthString(X, Y, K, dp),"</br>")
}
 
// Driver Code
 
// Given Input
let X = 4
let Y = 3
let K = 4
 
// Function Call
kthStringUtil(X, Y, K)
 
// This code is contributed by shinjanpatra
 
</script>


Output: 

aaabbba

 

Time Complexity: O(X*Y)
Auxiliary Space: O(X*Y)

Efficient Approach: The above approach can further be optimized by iteratively implementing the KthString function. Follow the steps below to solve this problem:  

  • Declare a 2D array, dp where dp[i][j] denotes the number of strings containing i number of a’s, and j number of b’s.
  • Iterate in the range [0, X] using the variable i: 
    • Iterate in the range [0, Y] using the variable j:
      • If i is greater than 0, then update dp[i][j] to dp[i][j] + dp[i-1][j].
      • If j is greater than 0, then update dp[i][j] to dp[i][j] + dp[i][j-1].
  • Now, iteratively find the Kth lexicographical smallest string.
  • Traverse while X is greater than 0 and Y is greater than 0:
    • If there are more than or equal to K strings that start with ‘a’, then print ‘a’ and decrement X by 1.
    • Else, the first character of the resultant string is ‘b’, print ‘b’, and decrement Y by 1.
  • If there are only ‘a’ characters present then print a string of all ‘a‘ characters.
  • If there are only ‘b‘ characters present then print a string of all ‘b‘ characters.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 30;
 
// Function to fill dp array
void findNumString(int X, int Y, int dp[][MAX])
{
 
    // Initialize all the entries with 0
    for (int i = 0; i < MAX; i++) {
        for (int j = 0; j < MAX; j++) {
            dp[i][j] = 0;
        }
    }
 
    // Update dp[0][0] to 1
    dp[0][0] = 1;
 
    // Traverse the dp array
    for (int i = 0; i <= X; ++i) {
        for (int j = 0; j <= Y; ++j) {
 
            // Update the value of dp[i][j]
            if (i > 0) {
                dp[i][j] += dp[i - 1][j];
            }
 
            if (j > 0) {
                dp[i][j] += dp[i][j - 1];
            }
        }
    }
}
 
// Iterative function to find the Kth
// lexicographical smallest string
void kthString(int X, int Y, int K, int dp[][MAX])
{
 
    while (X > 0 and Y > 0) {
 
        // If there are more than or
        // equal to K strings which start
        // with a, then print 'a'
        if (K <= dp[X - 1][Y]) {
            cout << 'a';
            X -= 1;
        }
 
        // Otherwise the first character
        // of the resultant string is b
        else {
            K -= dp[X - 1][Y];
            cout << 'b';
            Y -= 1;
        }
    }
 
    // If there are only 'a' characters
    // present then print a string of
    // all 'a' characters
    cout << string(X, 'a');
 
    // If there are only 'b' characters
    // present then print a string of
    // all 'b' characters
    cout << string(Y, 'b');
    cout << '\n';
}
 
// Function to find the Kth
// lexicographical smallest string
void kthStringUtil(int X, int Y, int K)
{
    int dp[MAX][MAX];
 
    // Function call to fill the dp array
    findNumString(X, Y, dp);
 
    // Function call to find the
    // required string
    kthString(X, Y, K, dp);
}
 
// Driver Code
int main()
{
 
    // Given Input
    int X = 4;
    int Y = 3;
    int K = 4;
 
    // Function Call
    kthStringUtil(X, Y, K);
 
    return 0;
}


Java




// Java code for the above approach
import java.io.*;
 
class Main {
  static final int MAX = 30;
 
  // Function to fill dp array
  static void findNumString(int X, int Y, int[][] dp) {
 
    // Initialize all the entries with 0
    for (int i = 0; i < MAX; i++) {
      for (int j = 0; j < MAX; j++) {
        dp[i][j] = 0;
      }
    }
 
    // Update dp[0][0] to 1
    dp[0][0] = 1;
 
    // Traverse the dp array
    for (int i = 0; i <= X; ++i) {
      for (int j = 0; j <= Y; ++j) {
 
        // Update the value of dp[i][j]
        if (i > 0) {
          dp[i][j] += dp[i - 1][j];
        }
 
        if (j > 0) {
          dp[i][j] += dp[i][j - 1];
        }
      }
    }
  }
 
  // Iterative function to find the Kth
  // lexicographical smallest string
  static void kthString(int X, int Y, int K, int[][] dp) {
 
    while (X > 0 && Y > 0) {
 
      // If there are more than or
      // equal to K strings which start
      // with a, then print 'a'
      if (K <= dp[X - 1][Y]) {
        System.out.print("a");
        X -= 1;
      }
 
      // Otherwise the first character
      // of the resultant string is b
      else {
        K -= dp[X - 1][Y];
        System.out.print("b");
        Y -= 1;
      }
    }
 
    // If there are only 'a' characters
    // present then print a string of
    // all 'a' characters
    for (int i = 0; i < X; i++) {
      System.out.print("a");
    }
 
    // If there are only 'b' characters
    // present then print a string of
    // all 'b' characters
    for (int i = 0; i < Y; i++) {
      System.out.print("b");
    }
    System.out.println();
  }
 
  // Function to find the Kth
  // lexicographical smallest string
  static void kthStringUtil(int X, int Y, int K) {
    int[][] dp = new int[MAX][MAX];
 
    // Function call to fill the dp array
    findNumString(X, Y, dp);
 
    // Function call to find the
    // required string
    kthString(X, Y, K, dp);
  }
 
  // Driver Code
  public static void main(String[] args) {
 
    // Given Input
    int X = 4;
    int Y = 3;
    int K = 4;
 
    // Function Call
    kthStringUtil(X, Y, K);
  }
}
 
// This code is contributed by lokeshpotta20.


Python3




# Python3 program for the above approach
MAX = 30;
 
# Function to fill dp array
def find_num_string(X, Y, dp):
   
    # Initialize all the entries with 0
    for i in range(MAX):
        for j in range(MAX):
            dp[i][j] = 0
             
    # Update dp[0][0] to 1
    dp[0][0] = 1
     
    # Traverse the dp array
    for i in range(X+1):
        for j in range(Y+1):
           
            # Update the value of dp[i][j]
            if i > 0:
                dp[i][j] += dp[i-1][j]
            if j > 0:
                dp[i][j] += dp[i][j-1]
 
# Iterative function to find the Kth
# lexicographical smallest string
def kth_string(X, Y, K, dp):
    while X > 0 and Y > 0:
       
        # If there are more than or
        # equal to K strings which start
        # with a, then print 'a'
        if K <= dp[X-1][Y]:
            print('a', end='')
            X -= 1
             
        # Otherwise the first character
        # of the resultant string is b
        else:
            K -= dp[X-1][Y]
            print('b', end='')
            Y -= 1
             
    # If there are only 'a' characters
    # present then print a string of
    # all 'a' characters
    print('a'*X, end='')
     
    # If there are only 'b' characters
    # present then print a string of
    # all 'b' characters
    print('b'*Y)
 
# Function to find the Kth
# lexicographical smallest string
def kth_string_util(X, Y, K):
    dp = [[0 for j in range(MAX)] for i in range(MAX)]
     
    # Function call to fill the dp array
    find_num_string(X, Y, dp)
     
    # Function call to find the required string
    kth_string(X, Y, K, dp)
 
# Driver Code
if __name__ == '__main__':
   
    # Given Input
    X = 4
    Y = 3
    K = 4
 
    # Function Call
    kth_string_util(X, Y, K)
     
# This code is contributed by ik_9


C#




// C# program to implement above approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
  static int MAX = 30;
 
  // Function to fill dp array
  static void findNumString(int X, int Y, int[][] dp)
  {
 
    // Initialize all the entries with 0
    for (int i = 0 ; i < MAX ; i++) {
      for (int j = 0 ; j < MAX ; j++) {
        dp[i][j] = 0;
      }
    }
 
    // Update dp[0][0] to 1
    dp[0][0] = 1;
 
    // Traverse the dp array
    for (int i = 0 ; i <= X ; ++i) {
      for (int j = 0 ; j <= Y ; ++j) {
 
        // Update the value of dp[i][j]
        if (i > 0) {
          dp[i][j] += dp[i - 1][j];
        }
 
        if (j > 0) {
          dp[i][j] += dp[i][j - 1];
        }
      }
    }
  }
 
  // Iterative function to find the Kth
  // lexicographical smallest string
  static void kthString(int X, int Y, int K, int[][] dp)
  {
 
    while (X > 0 && Y > 0) {
 
      // If there are more than or
      // equal to K strings which start
      // with a, then print 'a'
      if (K <= dp[X - 1][Y]) {
        Console.Write('a');
        X -= 1;
      }
 
      // Otherwise the first character
      // of the resultant string is b
      else {
        K -= dp[X - 1][Y];
        Console.Write('b');
        Y -= 1;
      }
    }
 
    // If there are only 'a' characters
    // present then print a string of
    // all 'a' characters
    String ans = "";
    for(int i = 0 ; i < X ; i++){
      ans+="a";
    }
    Console.Write(ans);
    ans = "";
 
    // If there are only 'b' characters
    // present then print a string of
    // all 'b' characters
    for(int i = 0 ; i < Y ; i++){
      ans+="b";
    }
    Console.Write(ans);
    Console.Write("\n");
  }
 
  // Function to find the Kth
  // lexicographical smallest string
  static void kthStringUtil(int X, int Y, int K)
  {
    int[][] dp = new int[MAX][];
    for(int i = 0 ; i < MAX ; i++){
      dp[i] = new int[MAX];
    }
 
    // Function call to fill the dp array
    findNumString(X, Y, dp);
 
    // Function call to find the
    // required string
    kthString(X, Y, K, dp);
  }
 
  // Driver Code
  public static void Main(string[] args){
 
    // Given Input
    int X = 4;
    int Y = 3;
    int K = 4;
 
    // Function Call
    kthStringUtil(X, Y, K);
 
  }
}
 
// This code is contributed by subhamgoyal2014.


Javascript




// Javascript program for the above approach
 
const MAX = 30;
 
// Function to fill dp array
function findNumString( X, Y, dp)
{
 
    // Initialize all the entries with 0
    for (let i = 0; i < MAX; i++) {
        for (let j = 0; j < MAX; j++) {
            dp[i][j] = 0;
        }
    }
 
    // Update dp[0][0] to 1
    dp[0][0] = 1;
 
    // Traverse the dp array
    for (let i = 0; i <= X; ++i) {
        for (let j = 0; j <= Y; ++j) {
 
            // Update the value of dp[i][j]
            if (i > 0) {
                dp[i][j] += dp[i - 1][j];
            }
 
            if (j > 0) {
                dp[i][j] += dp[i][j - 1];
            }
        }
    }
}
 
// Iterative function to find the Kth
// lexicographical smallest string
function kthString( X, Y, K, dp)
{
 
    while (X > 0 && Y > 0) {
 
        // If there are more than or
        // equal to K strings which start
        // with a, then print 'a'
        if (K <= dp[X - 1][Y]) {
            document.write('a');
            X -= 1;
        }
 
        // Otherwise the first character
        // of the resultant string is b
        else {
            K -= dp[X - 1][Y];
            document.write('b');
            Y -= 1;
        }
    }
 
    // If there are only 'a' characters
    // present then print a string of
    // all 'a' characters
    let ans = "";
    for(let i = 0 ; i < X ; i++){
      ans+="a";
    }
    document.write(ans);
    ans = "";
 
    // If there are only 'b' characters
    // present then print a string of
    // all 'b' characters
    for(let i = 0 ; i < Y ; i++){
      ans+="b";
    }
    document.write(ans);
}
 
// Function to find the Kth
// lexicographical smallest string
function kthStringUtil( X, Y, K)
{
    let dp=new Array(MAX);
    for(let i=0; i<MAX; i++)
        dp[i]=new Array(MAX);
    // Function call to fill the dp array
    findNumString(X, Y, dp);
 
    // Function call to find the
    // required string
    kthString(X, Y, K, dp);
}
 
// Driver Code
// Given Input
let X = 4;
let Y = 3;
let K = 4;
 
// Function Call
kthStringUtil(X, Y, K);


Output: 

aaabbba

 

Time Complexity: O(X*Y)
Auxiliary Space: O(X*Y)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments