Friday, January 10, 2025
Google search engine
HomeData Modelling & AIFind the string from an array that can be converted to a...

Find the string from an array that can be converted to a string S with minimum number of swaps

Given a string S and an array of strings arr[] of length N and M respectively, the task is to find the string from the given array to the string S by swapping minimum number of characters . If no string can be converted to S, print -1.

Examples:

Input: S = “abc”, arr[] = {“acb”, “xyz”}
Output: acb
Explanation: 
The string “acb” can be converted to “abc” by swapping 1 pair of characters “acb”  -> “abc“.
The string”xyz” cannot be converted to “abc”.
 

Input: S = “abc”, arr[] = {“ab”, “xy”, “cb”}
Output: -1

Approach: The problem can be solved by searching for anagrams of S from the given array of strings and then, for every such string, find the minimum number of character swaps required to convert the string to S.

Follow the steps below to solve the problem:

  • Traverse the array of strings and for each string present in the array, check if it is an anagram of S or not.
  • If no such string is found, then print -1.
  • Otherwise, find the minimum number of swaps required to convert the current string into S, by iterating over the characters of the current string, say S1.
  • Store the position of characters in S1 in 26 lists. For each character in S1, append its index to its corresponding list, i.e., list 0 stores all positions of the character ‘a’. Similarly, list 1 stores all positions of ‘b’ and so on.
  • After complete traversal of the string S1, iterate over the characters of the string S in reverse and for each character, say S[j], get its respective index from the given array of lists, say temp.
  • Now, the optimal move is to move the character at the last index in temp to the index j. This is optimal because:
    • Characters are being moved in every move. Hence, no move is being wasted.
    • The last index in temp would be closer to j than other indices as the string is being iterated in reverse.
    • To optimize, a Fenwick tree can be used to determine the modified positions of characters in S1, in case of any swaps.

 Illustration:

Suppose, S = “abca”, S1 = “cbaa”
Below is the list generated for S1:
List for ‘a’ = {2, 3}
List for ‘b’ = {1}
List for ‘c’ = {0}
Iterate over the characters of S, in reverse, by initializing minMoves with 0.

  1. S = “abca”, i = 3
    Remove last index from list corresponding to ‘a’, i.e. 3.
    Search the Fenwick Tree to check if there are any indices to the left of this index in the Fenwick Tree or not. 
    Since the tree is empty now, no need to shift this index.
    Add index 3 to the Fenwick Tree
    minMoves += (i – index) = (3 – 3). Therefore, minMoves = 0
  2. S = “abca”, i = 2
    Remove the last index from list corresponding to ‘c’, i.e. 0.
    Search the Fenwick Tree to check if there are any indices to the left of this index in the Fenwick Tree or not.  
    Since the only index in the tree is 3, and it is to the right of 0, no need to shift this index.
    Add index 0 to the Fenwick Tree
    minMoves += (i – index) = (2 – 0). Therefore, minMoves = 2
  3. S = “abca”, i = 1
    Remove last index from list corresponding to ‘b’, i.e. 1.
    Search the Fenwick Tree to check if there are any indices to the left of this index in the Fenwick Tree or not.  
    The count obtained is 1, i.e. there was one character to the left of index 1, which is now, towards it’s right.
    Add index 1 to the Fenwick Tree.
    new index = 1 – leftShit = 1 – 1 = 0
    minMoves += (i – new index) = 1 – 0 = 3
  4. S = “abca”, i= 0 
    Remove last index from list corresponding to ‘a’, i.e. 2.
    Search the Fenwick Tree to check if there are any indices to the left of this index in the Fenwick tree or not.  
    The count obtained is 2, i.e. there were two characters to the left of index 2, which is now, towards its right.
    Add index 2 to the Fenwick Tree.
    new index = 2 – leftShit = 2 – 2 = 0
    minMoves+= (i-new index) = 0 – 0 = 3

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check is two
// strings are anagrams
bool checkIsAnagram(vector<int> charCountS,
                    vector<int> charCountS1)
{
    for (int i = 0; i < 26; i++) {
        if (charCountS[i] != charCountS1[i])
            return false;
    }
    return true;
}
 
// Function to return the frequency of
// characters in the array of strings
vector<int> getCharCount(string S)
{
    vector<int> charCount(26, 0);
 
    for (char i : S)
        charCount[i - 'a']++;
 
    return charCount;
}
 
// Function to return the count of
// indices to the left of this index
int get(vector<int>& fenwickTree, int index)
{
    int leftShift = 0;
    leftShift += fenwickTree[index];
 
    while (index > 0) {
        index -= (-index) & index;
        leftShift += fenwickTree[index];
    }
    return leftShift;
}
 
// Update function of Fenwick Tree
void update(vector<int>& fenwickTree, int index)
{
    while (index < fenwickTree.size()) {
        fenwickTree[index]++;
        index += (-index) & index;
    }
}
 
// Function to get all positions of
// characters present in the string S1
vector<vector<int> > getPositions(string S)
{
 
    //@SuppressWarnings("unchecked")
    vector<vector<int> > charPositions(26);
 
    for (int i = 0; i < S.size(); i++)
        charPositions[i - 'a'].push_back(i);
 
    return charPositions;
}
 
// Function to return the minimum number
// of swaps required to convert S1 to S
int findMinMoves(string S, string S1)
{
 
    // cout<<"run\n";
    // Stores number of swaps
    int minMoves = 0;
 
    // Initialize Fenwick Tree
    vector<int> fenwickTree(S.size() + 1);
 
    // Get all positions of characters
    // present in the string S1
    vector<int> charPositions[26];
    int j = 0;
    for (char i : S1) {
        charPositions[i - 'a'].push_back(j);
        j++;
    }
 
    // cout<<charPositions[2].size()<<endl;
 
    // Traverse the given string in reverse
    for (int i = S.size() - 1; i >= 0; i--) {
 
        // Get the list corresponding
        // to character S[i]
        vector<int> temp = charPositions[S[i] - 'a'];
 
        // Size of the list
        int size = temp.size() - 1;
 
        // Get and remove last
        // indices from the list
        int index = temp[size] + 1;
        charPositions[S[i] - 'a'].pop_back();
 
        // temp.pop_back();
 
        // Count of indices to
        // the left of this index
        int leftShift = get(fenwickTree, index);
 
        // Update Fenwick T ree
        update(fenwickTree, index);
 
        // Shift the index to it's left
        index -= leftShift;
 
        // Update moves
        minMoves += abs(i - index + 1);
    }
 
    // Return moves
    return minMoves;
}
 
// Function to find anagram of S
// requiring minimum number of swaps
string getBeststring(string S, vector<string> group)
{
 
    // Initialize variables
    bool isAnagram = false;
    string beststring = "";
    int minMoves = INT_MAX;
 
    // Count frequency of characters in S
    vector<int> charCountS = getCharCount(S);
 
    // Traverse the array of strings
    for (string S1 : group) {
 
        // Count frequency of characters in S1
        vector<int> charCountS1 = getCharCount(S1);
 
        // cout<<S1<<endl;
        // Check if S1 is anagram of S
        bool anagram
            = checkIsAnagram(charCountS, charCountS1);
        // cout<<anagram<<endl;
 
        // If not an anagram of S
        if (anagram == 0)
            continue;
 
        isAnagram = true;
 
        // Count swaps required
        // to convert S to S1
        int moves = findMinMoves(S, S1);
        // cout<<moves<<endl;
 
        // Count minimum number of swaps
        if (moves < minMoves) {
            minMoves = moves;
            beststring = S1;
        }
    }
 
    // If no anagram is found, print -1
    return (isAnagram) ? beststring : "-1";
}
 
// Driver Code
int main()
{
    // Given string
    string S = "abcdac";
 
    // Given array of strings
    vector<string> arr = { "cbdaca", "abcacd", "abcdef" };
 
    string beststring = getBeststring(S, arr);
 
    // Print answer
    cout << (beststring) << endl;
}
 
// This code is contributed by mohit kumar 29


Java




// Java program for the above approach
 
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to find anagram of S
    // requiring minimum number of swaps
    static String getBestString(String S,
                                List<String> group)
    {
        // Initialize variables
        boolean isAnagram = false;
        String bestString = null;
        int minMoves = Integer.MAX_VALUE;
 
        // Count frequency of characters in S
        int[] charCountS = getCharCount(S);
 
        // Traverse the array of strings
        for (String S1 : group) {
 
            // Count frequency of characters in S1
            int[] charCountS1 = getCharCount(S1);
 
            // Check if S1 is anagram of S
            boolean anagram
                = checkIsAnagram(charCountS, charCountS1);
 
            // If not an anagram of S
            if (!anagram)
                continue;
 
            isAnagram = true;
 
            // Count swaps required
            // to convert S to S1
            int moves = findMinMoves(S, S1);
 
            // Count minimum number of swaps
            if (moves < minMoves) {
                minMoves = moves;
                bestString = S1;
            }
        }
 
        // If no anagram is found, print -1
        return (isAnagram) ? bestString : "-1";
    }
 
    // Function to return the minimum number
    // of swaps required to convert S1 to S
    static int findMinMoves(String S, String S1)
    {
 
        // Stores number of swaps
        int minMoves = 0;
 
        // Initialize Fenwick Tree
        int[] fenwickTree = new int[S.length() + 1];
 
        // Get all positions of characters
        // present in the string S1
        List<List<Integer> > charPositions
            = getPositions(S1);
 
        // Traverse the given string in reverse
        for (int i = S.length() - 1; i >= 0; i--) {
 
            // Get the list corresponding
            // to character S[i]
            List<Integer> temp
                = charPositions.get(S.charAt(i) - 'a');
 
            // Size of the list
            int size = temp.size() - 1;
 
            // Get and remove last
            // indices from the list
            int index = temp.remove(size) + 1;
 
            // Count of indices to
            // the left of this index
            int leftShift = get(fenwickTree, index);
 
            // Update Fenwick T ree
            update(fenwickTree, index);
 
            // Shift the index to it's left
            index -= leftShift;
 
            // Update moves
            minMoves += Math.abs(i - index + 1);
        }
 
        // Return moves
        return minMoves;
    }
 
    // Function to get all positions of
    // characters present in the string S1
    static List<List<Integer> > getPositions(String S)
    {
        @SuppressWarnings("unchecked")
        List<List<Integer> > charPositions
            = new ArrayList();
 
        for (int i = 0; i < 26; i++)
            charPositions.add(new ArrayList<Integer>());
 
        for (int i = 0; i < S.length(); i++)
            charPositions.get(S.charAt(i) - 'a').add(i);
 
        return charPositions;
    }
 
    // Update function of Fenwick Tree
    static void update(int[] fenwickTree, int index)
    {
        while (index < fenwickTree.length) {
            fenwickTree[index]++;
            index += (-index) & index;
        }
    }
 
    // Function to return the count of
    // indices to the left of this index
    static int get(int[] fenwickTree, int index)
    {
        int leftShift = 0;
        leftShift += fenwickTree[index];
 
        while (index > 0) {
            index -= (-index) & index;
            leftShift += fenwickTree[index];
        }
        return leftShift;
    }
 
    // Function to return the frequency of
    // characters in the array of strings
    static int[] getCharCount(String S)
    {
        int[] charCount = new int[26];
 
        for (int i = 0; i < S.length(); i++)
            charCount[S.charAt(i) - 'a']++;
 
        return charCount;
    }
 
    // Function to check is two
    // strings are anagrams
    static boolean checkIsAnagram(int[] charCountS,
                                  int[] charCountS1)
    {
 
        for (int i = 0; i < 26; i++) {
            if (charCountS[i] != charCountS1[i])
                return false;
        }
 
        return true;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Given string
        String S = "abcdac";
 
        // Given array of strings
        String arr[] = { "cbdaca", "abcacd", "abcdef" };
 
        String bestString
            = getBestString(S, Arrays.asList(arr));
 
        // Print answer
        System.out.println(bestString);
    }
}


Python3




# Python program for the above approach
import math
 
# Function to check is two
# strings are anagrams
 
 
def checkIsAnagram(charCountS, charCountS1):
    for i in range(26):
        if charCountS[i] != charCountS1[i]:
            return False
    return True
 
# Function to return the frequency of
# characters in the array of strings
 
 
def getCharCount(S):
    charCount = [0] * 26
    for i in S:
        charCount[ord(i) - ord('a')] += 1
    return charCount
 
# Function to return the count of
# indices to the left of this index
 
 
def get(fenwickTree, index):
    leftShift = 0
    leftShift += fenwickTree[index]
    while index > 0:
        index -= (-index) & index
        leftShift += fenwickTree[index]
    return leftShift
 
# Update function of Fenwick Tree
 
 
def update(fenwickTree, index):
    while index < len(fenwickTree):
        fenwickTree[index] += 1
        index += (-index) & index
 
# Function to get all positions of
# characters present in the string S1
 
 
def getPositions(S):
    charPositions = [[] for _ in range(26)]
    for i in range(len(S)):
        charPositions[ord(S[i]) - ord('a')].append(i)
    return charPositions
 
# Function to return the minimum number
# of swaps required to convert S1 to S
 
 
def findMinMoves(S, S1):
    # Stores number of swaps
    minMoves = 0
 
    # Initialize Fenwick Tree
    fenwickTree = [0] * (len(S) + 1)
    charPositions = [[] for _ in range(26)]
    j = 0
    for i in S1:
        charPositions[ord(i) - ord('a')].append(j)
        j += 1
    for i in range(len(S) - 1, -1, -1):
        temp = charPositions[ord(S[i]) - ord('a')]
        size = len(temp) - 1
        index = temp[size] + 1
        charPositions[ord(S[i]) - ord('a')].pop()
        leftShift = get(fenwickTree, index)
        update(fenwickTree, index)
        index -= leftShift
        minMoves += abs(i - index + 1)
    return minMoves
 
# Function to find anagram of S
# requiring minimum number of swaps
 
 
def getBeststring(S, group):
    isAnagram = False
    beststring = ""
    minMoves = math.inf
 
    # Count frequency of characters in S
    charCountS = getCharCount(S)
    for S1 in group:
        # Count frequency of characters in S1
        charCountS1 = getCharCount(S1)
 
        # Check if S1 is anagram of S
        anagram = checkIsAnagram(charCountS, charCountS1)
        if not anagram:
            continue
        isAnagram = True
 
        # Count swaps required
        # to convert S to S1
        moves = findMinMoves(S, S1)
 
        # Count minimum number of swaps
        if moves < minMoves:
            minMoves = moves
            beststring = S1
 
    # If no anagram is found, print -1
    return beststring if isAnagram else "-1"
 
# Driver Code
 
 
# Give String
S = "abcdac"
 
# Given array of strings
arr = ["cbdaca", "abcacd", "abcdef"]
beststring = getBeststring(S, arr)
print(beststring)
 
# This code is contributed by adityashae15


Javascript




// Javascript equivalent
 
// Function to check is two
// strings are anagrams
function checkIsAnagram(charCountS, charCountS1) {
    for (let i = 0; i < 26; i++) {
        if (charCountS[i] !== charCountS1[i]) {
            return false;
        }
    }
    return true;
}
 
// Function to return the frequency of
// characters in the array of strings
function getCharCount(S) {
    let charCount = new Array(26).fill(0);
    for (let i = 0; i < S.length; i++) {
        charCount[S.charCodeAt(i) - 'a'.charCodeAt()]++;
    }
    return charCount;
}
 
// Function to return the count of
// indices to the left of this index
function get(fenwickTree, index) {
    let leftShift = 0;
    leftShift += fenwickTree[index];
    while (index > 0) {
        index -= (-index) & index;
        leftShift += fenwickTree[index];
    }
    return leftShift;
}
 
// Update function of Fenwick Tree
function update(fenwickTree, index) {
    while (index < fenwickTree.length) {
        fenwickTree[index]++;
        index += (-index) & index;
    }
}
 
// Function to get all positions of
// characters present in the string S1
function getPositions(S) {
    let charPositions = [];
    for (let i = 0; i < 26; i++) {
        charPositions.push([]);
    }
    for (let i = 0; i < S.length; i++) {
        charPositions[S.charCodeAt(i) - 'a'.charCodeAt()].push(i);
    }
    return charPositions;
}
 
// Function to return the minimum number
// of swaps required to convert S1 to S
function findMinMoves(S, S1) {
    // Stores number of swaps
    let minMoves = 0;
 
    // Initialize Fenwick Tree
    let fenwickTree = new Array(S.length + 1).fill(0);
    let charPositions = [];
    for (let i = 0; i < 26; i++) {
        charPositions.push([]);
    }
    let j = 0;
    for (let i = 0; i < S1.length; i++) {
        charPositions[S1.charCodeAt(i) - 'a'.charCodeAt()].push(j);
        j++;
    }
    for (let i = S.length - 1; i >= 0; i--) {
        let temp = charPositions[S.charCodeAt(i) - 'a'.charCodeAt()];
        let size = temp.length - 1;
        let index = temp[size] + 1;
        charPositions[S.charCodeAt(i) - 'a'.charCodeAt()].pop();
        let leftShift = get(fenwickTree, index);
        update(fenwickTree, index);
        index -= leftShift;
        minMoves += Math.abs(i - index + 1);
    }
    return minMoves;
}
 
// Function to find anagram of S
// requiring minimum number of swaps
function getBeststring(S, group) {
    let isAnagram = false;
    let beststring = "";
    let minMoves = Number.MAX_VALUE;
 
    // Count frequency of characters in S
    let charCountS = getCharCount(S);
    for (let S1 of group) {
        // Count frequency of characters in S1
        let charCountS1 = getCharCount(S1);
 
        // Check if S1 is anagram of S
        let anagram = checkIsAnagram(charCountS, charCountS1);
        if (!anagram) {
            continue;
        }
        isAnagram = true;
 
        // Count swaps required
        // to convert S to S1
        let moves = findMinMoves(S, S1);
 
        // Count minimum number of swaps
        if (moves < minMoves) {
            minMoves = moves;
            beststring = S1;
        }
    }
 
    // If no anagram is found, print -1
    return isAnagram ? beststring : "-1";
}
 
// Driver Code
 
// Give String
let S = "abcdac";
 
// Given array of strings
let arr = ["cbdaca", "abcacd", "abcdef"];
let beststring = getBeststring(S, arr);
console.log(beststring);


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class AnagramSwaps {
    // Function to check if two
    // strings are anagrams
    public static bool CheckIsAnagram(int[] charCountS,
                                      int[] charCountS1)
    {
        for (int i = 0; i < 26; i++) {
            if (charCountS[i] != charCountS1[i]) {
                return false;
            }
        }
        return true;
    }
    // Function to return the frequency of
    // characters in the array of strings
    public static int[] GetCharCount(string S)
    {
        int[] charCount = new int[26];
        foreach(char c in S) { charCount++; }
        return charCount;
    }
 
    // Function to return the count of
    // indices to the left of this index
    public static int Get(int[] fenwickTree, int index)
    {
        int leftShift = 0;
        leftShift += fenwickTree[index];
        while (index > 0) {
            index -= (-index) & index;
            leftShift += fenwickTree[index];
        }
        return leftShift;
    }
 
    // Update function of Fenwick Tree
    public static void Update(int[] fenwickTree, int index)
    {
        while (index < fenwickTree.Length) {
            fenwickTree[index] += 1;
            index += (-index) & index;
        }
    }
 
    // Function to get all positions of
    // characters present in the string S1
    public static List<int>[] GetPositions(string S)
    {
        List<int>[] charPositions = new List<int>[ 26 ];
        for (int i = 0; i < 26; i++) {
            charPositions[i] = new List<int>();
        }
        for (int i = 0; i < S.Length; i++) {
            charPositions[S[i] - 'a'].Add(i);
        }
        return charPositions;
    }
 
    // Function to return the minimum number
    // of swaps required to convert S1 to S
    public static int FindMinMoves(string S, string S1)
    {
        // Stores number of swaps
        int minMoves = 0;
 
        // Initialize Fenwick Tree
        int[] fenwickTree = new int[S.Length + 1];
        List<int>[] charPositions = new List<int>[ 26 ];
        for (int i = 0; i < 26; i++) {
            charPositions[i] = new List<int>();
        }
        int j = 0;
        foreach(char c in S1)
        {
            charPositions.Add(j);
            j++;
        }
        for (int i = S.Length - 1; i >= 0; i--) {
            List<int> temp = charPositions[S[i] - 'a'];
            int size = temp.Count - 1;
            int index = temp[size] + 1;
            charPositions[S[i] - 'a'].RemoveAt(size);
            int leftShift = Get(fenwickTree, index);
            Update(fenwickTree, index);
            index -= leftShift;
            minMoves += Math.Abs(i - index + 1);
        }
        return minMoves;
    }
 
    // Function to find anagram of S
    // requiring minimum number of swaps
    public static string GetBestString(string S,
                                       string[] group)
    {
        bool isAnagram = false;
        string bestString = "";
        int minMoves = int.MaxValue;
        // Count frequency of characters in S
        int[] charCountS = GetCharCount(S);
 
        foreach(string S1 in group)
        {
            // Count frequency of characters in S1
            int[] charCountS1 = GetCharCount(S1);
 
            // Check if S1 is anagram of S
            bool anagram
                = CheckIsAnagram(charCountS, charCountS1);
            if (!anagram)
                continue;
 
            isAnagram = true;
 
            // Count swaps required to convert S to S1
            int moves = FindMinMoves(S, S1);
 
            // Count minimum number of swaps
            if (moves < minMoves) {
                minMoves = moves;
                bestString = S1;
            }
        }
 
        // If no anagram is found, return -1
        return isAnagram ? bestString : "-1";
    }
 
    // Driver Code
    static void Main(string[] args)
    {
        // Give String
        string S = "abcdac";
        // Given array of strings
        string[] arr = { "cbdaca", "abcacd", "abcdef" };
 
        string bestString = GetBestString(S, arr);
        Console.WriteLine(bestString);
    }
}


Output: 

abcacd

 

Time Complexity: O(M * N * logN)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments