Tuesday, November 19, 2024
Google search engine
HomeData Modelling & AIRearrange the Array to maximize the elements which is smaller than both...

Rearrange the Array to maximize the elements which is smaller than both its adjacent elements

Given an array arr[] consisting of N distinct integers, the task is to rearrange the array elements such that the count of elements that are smaller than their adjacent elements is maximum. 

Note: The elements left of index 0 and right of index N-1 are considered as -INF.

Examples:

Input: arr[] = {1, 2, 3, 4}
Output: 2 1 3 4
Explanation:
One possible way to rearrange is as {2, 1, 3, 4}. 

  1. For arr[0](= 2), is greater than the elements on both sides of it.
  2. For arr[1](= 1), is less than the elements on both sides of it.
  3. For arr[2](= 3), is less than the elements on its right and greater than the elements on its left.
  4. For arr[4](= 1), is greater than the elements on both sides of it.

Therefore, there is a total of 1 array element satisfying the condition in the above arrangement. And it is the maximum possible.

Input: arr[] = {2, 7}
Output: 2 7

Approach: The given problem can be solved based on the following observations:

  1. Consider the maximum number of indices that can satisfy the conditions being X.
  2. Then, at least (X + 1) larger elements are required to make it possible as each element requires 2 greater elements.
  3. Therefore, the maximum number of elements that is smaller than their adjacent is given by (N – 1)/2.

Follow the steps below to solve the problem:

  • Initialize an array, say temp[] of size N, that stores the rearranged array.
  • Sort the given array arr[] in the increasing order.
  • Choose the first (N – 1)/2 elements from the array arr[] and place them at the odd indices in the array temp[].
  • Choose the rest of the (N + 1)/2 elements from the array arr[] and place them in the remaining indices in the array temp[].
  • Finally, after completing the above steps, print the array temp[] as the resultant array.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to rearrange array such that
// count of element that are smaller than
// their adjacent elements is maximum
void maximumIndices(int arr[], int N)
{
    // Stores the rearranged array
    int temp[N] = { 0 };
 
    // Stores the maximum count of
    // elements
    int maxIndices = (N - 1) / 2;
 
    // Sort the given array
    sort(arr, arr + N);
 
    // Place the smallest (N - 1)/2
    // elements at odd indices
    for (int i = 0; i < maxIndices; i++) {
        temp[2 * i + 1] = arr[i];
    }
 
    // Placing the rest of the elements
    // at remaining indices
    int j = 0;
 
    for (int i = maxIndices; i < N;) {
 
        // If no element of the array
        // has been placed here
        if (temp[j] == 0) {
            temp[j] = arr[i];
            i++;
        }
        j++;
    }
 
    // Print the resultant array
    for (int i = 0; i < N; i++) {
        cout << temp[i] << " ";
    }
}
 
// Driver Code
int main()
{
    // Input
    int arr[] = { 1, 2, 3, 4 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    maximumIndices(arr, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to rearrange array such that
    // count of element that are smaller than
    // their adjacent elements is maximum
    public static void maximumIndices(int arr[], int N)
    {
        // Stores the rearranged array
        int[] temp = new int[N];
 
        // Stores the maximum count of
        // elements
        int maxIndices = (N - 1) / 2;
 
        // Sort the given array
        Arrays.sort(arr);
 
        // Place the smallest (N - 1)/2
        // elements at odd indices
        for (int i = 0; i < maxIndices; i++) {
            temp[2 * i + 1] = arr[i];
        }
 
        // Placing the rest of the elements
        // at remaining indices
        int j = 0;
 
        for (int i = maxIndices; i < N;) {
 
            // If no element of the array
            // has been placed here
            if (temp[j] == 0) {
                temp[j] = arr[i];
                i++;
            }
            j++;
        }
 
        // Print the resultant array
        for (int i = 0; i < N; i++) {
            System.out.print(temp[i] + " ");
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Input
        int arr[] = { 1, 2, 3, 4 };
        int N = 4;
 
        // Function call
        maximumIndices(arr, N);
    }
}
 
// This code is contributed by RohitOberoi.


Python3




# Python program for the above approach
 
# Function to rearrange array such that
# count of element that are smaller than
# their adjacent elements is maximum
def maximumIndices(arr, N):
    # Stores the rearranged array
    temp = [0] * N
 
    # Stores the maximum count of
    # elements
    maxIndices = (N - 1) // 2
 
    # Sort the given array
    arr.sort()
 
    # Place the smallest (N - 1)/2
    # elements at odd indices
    for i in range(maxIndices):
        temp[2 * i + 1] = arr[i]
 
    # Placing the rest of the elements
    # at remaining indices
    j = 0
    i = maxIndices
 
    while(i < N):
 
        # If no element of the array
        # has been placed here
        if (temp[j] == 0):
            temp[j] = arr[i]
            i += 1
 
        j += 1
 
    # Print the resultant array
    for i in range(N):
        print(temp[i], end=" ")
 
 
# Driver Code
 
# Input
arr = [1, 2, 3, 4]
N = len(arr)
 
# Function call
maximumIndices(arr, N)
 
# This code is contributed by gfgking


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to rearrange array such that
// count of element that are smaller than
// their adjacent elements is maximum
public static void maximumIndices(int []arr, int N)
{
     
    // Stores the rearranged array
    int[] temp = new int[N];
 
    // Stores the maximum count of
    // elements
    int maxIndices = (N - 1) / 2;
 
    // Sort the given array
    Array.Sort(arr);
 
    // Place the smallest (N - 1)/2
    // elements at odd indices
    for(int i = 0; i < maxIndices; i++)
    {
        temp[2 * i + 1] = arr[i];
    }
 
    // Placing the rest of the elements
    // at remaining indices
    int j = 0;
 
    for(int i = maxIndices; i < N;)
    {
         
        // If no element of the array
        // has been placed here
        if (temp[j] == 0)
        {
            temp[j] = arr[i];
            i++;
        }
        j++;
    }
 
    // Print the resultant array
    for(int i = 0; i < N; i++)
    {
        Console.Write(temp[i] + " ");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Input
    int []arr = { 1, 2, 3, 4 };
    int N = 4;
 
    // Function call
    maximumIndices(arr, N);
}
}
 
// This code is contributed by shivanisinghss2110


Javascript




<script>
 
     // JavaScript program for the above approach
 
 
     // Function to rearrange array such that
     // count of element that are smaller than
     // their adjacent elements is maximum
     function maximumIndices(arr, N) {
         // Stores the rearranged array
         let temp = new Array(N).fill(0);
 
         // Stores the maximum count of
         // elements
         let maxIndices = parseInt((N - 1) / 2);
 
         // Sort the given array
         arr.sort(function (a, b) { return a - b; })
 
         // Place the smallest (N - 1)/2
         // elements at odd indices
         for (let i = 0; i < maxIndices; i++) {
             temp[2 * i + 1] = arr[i];
         }
 
         // Placing the rest of the elements
         // at remaining indices
         let j = 0;
 
         for (let i = maxIndices; i < N;) {
 
             // If no element of the array
             // has been placed here
             if (temp[j] == 0) {
                 temp[j] = arr[i];
                 i++;
             }
             j++;
         }
 
         // Print the resultant array
         for (let i = 0; i < N; i++) {
             document.write(temp[i] + " ");
         }
     }
 
     // Driver Code
 
     // Input
     let arr = [1, 2, 3, 4];
     let N = arr.length;
 
     // Function call
     maximumIndices(arr, N);
 
 // This code is contributed by Potta Lokesh
  
 </script>


Output

2 1 3 4 

Time  Complexity: O(N*log(N))
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments