Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMinimum number of Circular obstacles required to obstruct the path in a...

Minimum number of Circular obstacles required to obstruct the path in a Grid

Consider a grid of dimensions NxM and an array R consisting of available circular obstacles, the task is to find the minimum number of circular obstacles of given radiuses required to obstruct the path between source [0, 0] and destination [N-1, M-1]. If not possible, print -1. 
Note: The circular obstacles can overlap as shown in the image in example 1.

Examples: 

Input: N = 4, M = 5, R[] = {1.0, 1.5, 1.25} 
Output:
 

Input: N = 10, M = 12, R[] = {1.0, 1.25} 
Output: -1  

Approach: 

  • Find whether to put the obstacles row-wise or column-wise.
  • Sort the radius in decreasing order.
  • Since the obstacles cover an entire circle with radius R[i], therefore, for a straight line, it covers the diameter.
  • Decrease the val by 2 * Ri until it becomes zero using larger values in array R[].
  • After using all the obstacles, when val <= 0 return the count of obstacles used, and if the val > 0 after using all the obstacles, print -1.

Below is the implementation of the above approach. 

CPP




// C++ program to find the minimum
// number of obstacles required
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum
// number of obstacles required
int solve(int n, int m, int obstacles,
          double range[])
{
    // Find the minimum range required
    // to put obstacles
    double val = min(n, m);
 
    // Sorting the radius
    sort(range, range + obstacles);
 
    int c = 1;
    for (int i = obstacles - 1; i >= 0; i--) {
        range[i] = 2 * range[i];
        val -= range[i];
 
        // If val is less than zero
        // then we have find the number of
        // obstacles required
        if (val <= 0) {
            return c;
        }
        else {
            c++;
        }
    }
 
    if (val > 0) {
        return -1;
    }
}
 
// Driver function
int main()
{
    int n = 4, m = 5, obstacles = 3;
    double range[] = { 1.0, 1.25, 1.15 };
    cout << solve(n, m, obstacles, range) << "\n";
    return 0;
}


Java




// Java program to find the minimum
// number of obstacles required
import java.util.*;
 
class GFG
{
 
// Function to find the minimum
// number of obstacles required
static int solve(int n, int m, int obstacles,
                double range[])
{
    // Find the minimum range required
    // to put obstacles
    double val = Math.min(n, m);
 
    // Sorting the radius
    Arrays.sort(range);
 
    int c = 1;
    for (int i = obstacles - 1; i >= 0; i--)
    {
        range[i] = 2 * range[i];
        val -= range[i];
 
        // If val is less than zero
        // then we have find the number of
        // obstacles required
        if (val <= 0)
        {
            return c;
        }
        else
        {
            c++;
        }
    }
 
    if (val > 0)
    {
        return -1;
    }
    return 0;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 4, m = 5, obstacles = 3;
    double range[] = { 1.0, 1.25, 1.15 };
    System.out.print(solve(n, m, obstacles, range)+ "\n");
}
}
 
// This code is contributed by PrinciRaj1992


C#




// C# program to find the minimum
// number of obstacles required
using System;
 
class GFG
{
     
    // Function to find the minimum
    // number of obstacles required
    static int solve(int n, int m, int obstacles,
                    double []range)
    {
        // Find the minimum range required
        // to put obstacles
        double val = Math.Min(n, m);
     
        // Sorting the radius
        Array.Sort(range);
     
        int c = 1;
        for (int i = obstacles - 1; i >= 0; i--)
        {
            range[i] = 2 * range[i];
            val -= range[i];
     
            // If val is less than zero
            // then we have find the number of
            // obstacles required
            if (val <= 0)
            {
                return c;
            }
            else
            {
                c++;
            }
        }
     
        if (val > 0)
        {
            return -1;
        }
        return 0;
    }
     
    // Driver code
    public static void Main()
    {
        int n = 4, m = 5, obstacles = 3;
        double []range = { 1.0, 1.25, 1.15 };
        Console.WriteLine(solve(n, m, obstacles, range));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 program to find the minimum
# number of obstacles required
 
# Function to find the minimum
# number of obstacles required
def solve(n, m, obstacles,range):
     
    # Find the minimum range required
    # to put obstacles
    val = min(n, m)
 
    # Sorting the radius
    range = sorted(range)
    c = 1
    for i in range(obstacles - 1, -1, -1):
        range[i] = 2 * range[i]
        val -= range[i]
         
        # If val is less than zero
        # then we have find the number of
        # obstacles required
        if (val <= 0):
            return c
        else:
            c += 1
 
    if (val > 0):
        return -1
 
# Driver code
n = 4
m = 5
obstacles = 3
range = [1.0, 1.25, 1.15]
print(solve(n, m, obstacles, range))
 
# This code is contributed by mohit kumar 29


Javascript




<script>
  
// Javascript program to find the minimum
// number of obstacles required
// Function to find the minimum
// number of obstacles required
function solve(n, m, obstacles, range)
{
    // Find the minimum range required
    // to put obstacles
    var val = Math.min(n, m);
 
    // Sorting the radius
    range.sort((a,b)=>a-b)
 
    var c = 1;
    for (var i = obstacles - 1; i >= 0; i--) {
        range[i] = 2 * range[i];
        val -= range[i];
 
        // If val is less than zero
        // then we have find the number of
        // obstacles required
        if (val <= 0) {
            return c;
        }
        else {
            c++;
        }
    }
 
    if (val > 0) {
        return -1;
    }
}
 
// Driver function
var n = 4, m = 5, obstacles = 3;
var range = [1.0, 1.25, 1.15];
document.write( solve(n, m, obstacles, range) + "<br>");
 
 
</script>


Output: 

2

 

Time Complexity: O(N * log(N)), where N is the number of given obstacles.
Auxiliary Space: O(1), no extra space is required, so it is a constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments