Wednesday, January 1, 2025
Google search engine
HomeData Modelling & AIMinimum flips to make Matrix identical for all rotations

Minimum flips to make Matrix identical for all rotations

Given a binary matrix Mat[][] of size N*N, the task is to find the minimum number of flips to be performed such that the matrix is identical for all rotations.

Examples:

Input: Mat[][] = {{1, 0, 0}, {0, 1, 0}, {1, 0, 1}}
Output: 1
Explanation:  Change the element at row = 1, col =  3 from 0 to 1.
Now for all the rotations the matrix is identical.

Input: {{0}}
Output: 0

Approach: To solve the problem follow the below idea:

Rotate the matrix 4 times and for every position check how many of elements needs to be changed based on their positions in each rotation.

Follow the steps mentioned below to implement the observation:

  • Initialize a matrix of size N2 with 0 to store the count of 1 at that position for every rotation.
  • Rotate the matrix 4 times and count 1 for every position of the matrix.
  • Initialize Sum = 0 and count min(count of 1, count of 0) for every position of Mat[][].
  • Return Sum/4, as we count the same position 4 times.

Below is the implementation of the above approach:

C++




// C++ code for the above approach:
 
#include <bits/stdc++.h>
using namespace std;
 
// After transpose we swap
// elements of column
// one by one for finding left
// rotation of matrix
// by 90 degree
void reverseColumns(vector<vector<bool> >& arr)
{
    int R = arr.size();
    int C = arr[0].size();
 
    for (int i = 0; i < C; i++)
        for (int j = 0, k = C - 1; j < k; j++, k--)
            swap(arr[j][i], arr[k][i]);
}
 
// Function to do transpose of matrix
void transpose(vector<vector<bool> >& arr)
{
    int R = arr.size();
    int C = arr[0].size();
 
    for (int i = 0; i < R; i++)
        for (int j = i; j < C; j++)
            swap(arr[i][j], arr[j][i]);
}
 
// Function to rotate matrix
// anticlockwise by 90 degree
void rotate(vector<vector<bool> >& arr)
{
    transpose(arr);
    reverseColumns(arr);
}
 
// Function to return the minimum number of flips
int solve(vector<vector<bool> > v, int n)
{
    int Sum = 0;
 
    // Initialize Count vector
    vector<vector<int> > c(n, vector<int>(n, 0));
 
    // Count 1 in each position for every rotation
    for (int t = 0; t < 4; t++) {
        rotate(v);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (v[i][j] == 1)
                    c[i][j]++;
            }
        }
    }
 
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            Sum += min(c[i][j], 4 - c[i][j]);
        }
    }
 
    // Count Minimum reversal
    return Sum / 4;
}
 
// Driver Code
int main()
{
    vector<vector<bool> > v
        = { { 1, 0, 0 }, { 0, 1, 0 }, { 1, 0, 1 } };
 
    int N = 3;
 
    // Function call
    cout << solve(v, N) << endl;
    return 0;
}


Java




// Java code to implement the above approach
import java.util.*;
 
class GFG {
 
 
  // After transpose we swap
  // elements of column
  // one by one for finding left
  // rotation of matrix
  // by 90 degree
  static void reverseColumns(int[][] arr)
  {
    int R = arr.length;
    int C = arr[0].length;
 
    for (int i = 0; i < C; i++){
      for (int j = 0, k = C - 1; j < k; j++, k--){
        int temp = arr[j][i];
        arr[j][i] = arr[k][i];
        arr[k][i] = temp;
      }
    }
  }
 
  // Function to do transpose of matrix
  static void transpose(int[][] arr)
  {
    int R = arr.length;
    int C = arr[0].length;
 
    for (int i = 0; i < R; i++){
      for (int j = i; j < C; j++){
        int temp = arr[j][i];
        arr[j][i] = arr[i][j];
        arr[i][j] = temp;
      }
    }
  }
 
  // Function to rotate matrix
  // anticlockwise by 90 degree
  static void rotate(int[][] arr)
  {
    transpose(arr);
    reverseColumns(arr);
  }
 
  // Function to return the minimum number of flips
  static int solve(int[][] v, int n)
  {
    double Sum = 0.0;
 
    // Initialize Count vector
    int[][] c = new int[n][n];
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < n; j++) {
        c[i][j] = 1;
      }
    }
 
    // Count 1 in each position for every rotation
    for (int t = 0; t < 4; t++) {
      rotate(v);
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
          if (v[i][j] == 1)
            c[i][j]++;
        }
      }
    }
 
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < n; j++) {
        Sum += Math.min(c[i][j], 4 - c[i][j]);
      }
    }
 
    // Count Minimum reversal
    return (int)Math.round(Sum / 4);
  }
 
  // Driver Code
  public static void main (String[] args) {
 
    int[][] v
      = { { 1, 0, 0 }, { 0, 1, 0 }, { 1, 0, 1 } };
 
    int N = 3;
 
    // Function call
    System.out.println(solve(v, N));
  }
}
 
// This code is contributed by sanjoy_62.


Python3




class GFG :
   
    # After transpose we swap
    # elements of column
    # one by one for finding left
    # rotation of matrix
    # by 90 degree
    @staticmethod
    def reverseColumns( arr) :
        R = len(arr)
        C = len(arr[0])
        i = 0
        while (i < C) :
            j = 0
            k = C - 1
            while (j < k) :
                temp = arr[j][i]
                arr[j][i] = arr[k][i]
                arr[k][i] = temp
                j += 1
                k -= 1
            i += 1
             
    # Function to do transpose of matrix
    @staticmethod
    def transpose( arr) :
        R = len(arr)
        C = len(arr[0])
        i = 0
        while (i < R) :
            j = i
            while (j < C) :
                temp = arr[j][i]
                arr[j][i] = arr[i][j]
                arr[i][j] = temp
                j += 1
            i += 1
             
    # Function to rotate matrix
    # anticlockwise by 90 degree
    @staticmethod
    def rotate( arr) :
        GFG.transpose(arr)
        GFG.reverseColumns(arr)
         
    # Function to return the minimum number of flips
    @staticmethod
    def  solve( v,  n) :
        Sum = 0.0
         
        # Initialize Count vector
        c = [[0] * (n) for _ in range(n)]
        i = 0
        while (i < n) :
            j = 0
            while (j < n) :
                c[i][j] = 1
                j += 1
            i += 1
             
        # Count 1 in each position for every rotation
        t = 0
        while (t < 4) :
            GFG.rotate(v)
            i = 0
            while (i < n) :
                j = 0
                while (j < n) :
                    if (v[i][j] == 1) :
                        c[i][j] += 1
                    j += 1
                i += 1
            t += 1
        i = 0
        while (i < n) :
            j = 0
            while (j < n) :
                Sum += min(c[i][j],4 - c[i][j])
                j += 1
            i += 1
             
        # Count Minimum reversal
        return int(round(Sum / 4))
       
    # Driver Code
    @staticmethod
    def main( args) :
        v = [[1, 0, 0], [0, 1, 0], [1, 0, 1]]
        N = 3
         
        # Function call
        print(GFG.solve(v, N))
     
if __name__=="__main__":
    GFG.main([])
     
    # This code is contributed by aadityaburujwale.


C#




// C# code to implement the above approach
using System;
 
public class GFG{
 
  // After transpose we swap
  // elements of column
  // one by one for finding left
  // rotation of matrix
  // by 90 degree
  static void reverseColumns(int[,] arr)
  {
    int C = arr.GetLength(1);
 
    for (int i = 0; i < C; i++){
      for (int j = 0, k = C - 1; j < k; j++, k--){
        int temp = arr[j ,i];
        arr[j, i] = arr[k ,i];
        arr[k, i] = temp;
      }
    }
  }
 
  // Function to do transpose of matrix
  static void transpose(int[, ] arr)
  {
    int R = arr.GetLength(0);
    int C = arr.GetLength(1);
 
    for (int i = 0; i < R; i++){
      for (int j = i; j < C; j++){
        int temp = arr[j,i];
        arr[j,i] = arr[i,j];
        arr[i,j] = temp;
      }
    }
  }
 
  // Function to rotate matrix
  // anticlockwise by 90 degree
  static void rotate(int[,] arr)
  {
    transpose(arr);
    reverseColumns(arr);
  }
 
  // Function to return the minimum number of flips
  static int solve(int[,] v, int n)
  {
    double Sum = 0.0;
 
    // Initialize Count vector
    int[,] c = new int[n,n];
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < n; j++) {
        c[i,j] = 1;
      }
    }
 
    // Count 1 in each position for every rotation
    for (int t = 0; t < 4; t++) {
      rotate(v);
      for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
          if (v[i,j] == 1)
            c[i,j]++;
        }
      }
    }
 
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < n; j++) {
        Sum += Math.Min(c[i,j], 4 - c[i,j]);
      }
    }
 
    // Count Minimum reversal
    return (int)Math.Round(Sum / 4);
  }
 
  // Driver Code
  static public void Main (){
 
    int[,] v
      = new int[,] { { 1, 0, 0 }, { 0, 1, 0 }, { 1, 0, 1 } };
 
    int N = 3;
 
    // Function call
    Console.Write(solve(v, N));
  }
}
 
// This code is contributed by hrithikgarg03188.


Javascript




<script>
    // JavaScript code for the above approach:
 
 
    // After transpose we swap
    // elements of column
    // one by one for finding left
    // rotation of matrix
    // by 90 degree
    const reverseColumns = (arr) => {
        let R = arr.length;
        let C = arr[0].length;
 
        for (let i = 0; i < C; i++)
            for (let j = 0, k = C - 1; j < k; j++, k--) {
                let temp = arr[j][i];
                arr[j][i] = arr[k][i];
                arr[k][i] = temp;
            }
    }
 
    // Function to do transpose of matrix
    const transpose = (arr) => {
        let R = arr.length;
        let C = arr[0].length;
 
        for (let i = 0; i < R; i++)
            for (let j = i; j < C; j++) {
                let temp = arr[j][i];
                arr[j][i] = arr[i][j];
                arr[i][j] = temp;
            }
    }
 
    // Function to rotate matrix
    // anticlockwise by 90 degree
    const rotate = (arr) => {
        transpose(arr);
        reverseColumns(arr);
    }
 
    // Function to return the minimum number of flips
    const solve = (v, n) => {
        let Sum = 0;
 
        // Initialize Count vector
        let c = new Array(n).fill(0).map(() => new Array(n).fill(0));
 
        // Count 1 in each position for every rotation
        for (let t = 0; t < 4; t++) {
            rotate(v);
            for (let i = 0; i < n; i++) {
                for (let j = 0; j < n; j++) {
                    if (v[i][j] == 1)
                        c[i][j]++;
                }
            }
        }
 
        for (let i = 0; i < n; i++) {
            for (let j = 0; j < n; j++) {
                Sum += Math.min(c[i][j], 4 - c[i][j]);
            }
        }
 
        // Count Minimum reversal
        return parseInt(Sum / 4);
    }
 
    // Driver Code
 
    let v = [[1, 0, 0], [0, 1, 0], [1, 0, 1]];
 
    let N = 3;
 
    // Function call
    document.write(solve(v, N));
 
// This code is contributed by rakeshsahni
 
</script>


Output

1

Time Complexity: O(N2)
Auxiliary Space: O(N2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
07 Oct, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments