Given an array arr[] containing N integers, the task is to calculate the average of the difference between both elements in pairs formed from given N integers.
Examples:
Input: arr[] = {-1, 3, -5, 4}
Output: 5.166667
Explanation: There are 6 possible pair of points in the given array with the pairwise difference as: diff(-1, 3) = 4, diff(-1, -5) = 4, diff(-1, 4) = 5, diff(3, -5) = 8, diff(3, 4) = 1, diff(-5, 4) = 9. Therefore, average pairwise difference is (4 + 4 + 5 + 8 + 1 + 9)/6 = 31/6 = 5.166667.Input: arr[] = { -1, 2, -3, 7, -6 }
Output: 6.2
Approach: This problem can be solved by using the Greedy Approach and prefix sum method. If the points in the array arr[] are in sorted order, then the sum of distances of ith point to all the greater points can be calculated as: (arr[i+1] – arr[i]) + (arr[i+2] – arr[i]) … + (arr[N-1] – arr[i]) => (arr[i+1] + arr[i+2]… + arr[N-1]) – arr[i] * (N – 1 – i). Using this observation, the given problem can be solved using the following steps:
- Initially sort the array arr[] in non-decreasing order.
- Create a prefix sum array pre[] of the array arr[].
- Iterate through every index i and add (pre[N – 1] – pre[i]) – arr[i] * (N – 1 – i) into a variable ans.
- The required answer is ans / count of pairs => ans / (N*(N-1)/2).
Below is the implementation of the above approach:
C++
// C++ program for above approach #include <bits/stdc++.h> using namespace std; // Function to find average distance // between given points on a line long double averageDistance( vector< int > arr, int N) { // Sorting the array arr[] sort(arr.begin(), arr.end()); // Stores the prefix sum // array of arr[] int pre[N] = { 0 }; pre[0] = arr[0]; // Loop to calculate prefix sum for ( int i = 1; i < N; i++) { pre[i] = pre[i - 1] + arr[i]; } // Initialising the answer variable long double ans = 0; // Loop to iterate through arr[] for ( int i = 0; i < N - 1; i++) { // Adding summation of all // distances from ith point ans += (pre[N - 1] - pre[i]) - arr[i] * (N - 1 - i); } // Return Average return ans / ((N * (N - 1)) / 2); } // Driver Code int main() { vector< int > arr = { -1, 3, -5, 4 }; cout << averageDistance(arr, arr.size()); return 0; } |
Java
// Java implementation for the above approach import java.util.*; class GFG { // Function to find average distance // between given points on a line static double averageDistance( int [] arr, int N) { // Sorting the array arr[] Arrays.sort(arr); // Stores the prefix sum // array of arr[] int [] pre = new int [N]; pre[ 0 ] = arr[ 0 ]; // Loop to calculate prefix sum for ( int i = 1 ; i < N; i++) { pre[i] = pre[i - 1 ] + arr[i]; } // Initialising the answer variable double ans = 0 ; // Loop to iterate through arr[] for ( int i = 0 ; i < N - 1 ; i++) { // Adding summation of all // distances from ith point ans += (pre[N - 1 ] - pre[i]) - arr[i] * (N - 1 - i); } // Return Average ans = (ans / ((N * (N - 1 )) / 2 )); return ans; } // Driver Code public static void main(String[] args) { int [] arr = { - 1 , 3 , - 5 , 4 }; System.out.print(String.format( "%.5f" , averageDistance(arr, arr.length))); } } // This code is contributed by ukasp. |
Python3
# Python3 program for above approach # Function to find average distance # between given points on a line def averageDistance(arr, N): # Sorting the array arr[] arr.sort() # Stores the prefix sum # array of arr[] pre = [ 0 for _ in range (N)] pre[ 0 ] = arr[ 0 ] # Loop to calculate prefix sum for i in range ( 1 , N): pre[i] = pre[i - 1 ] + arr[i] # Initialising the answer variable ans = 0 # Loop to iterate through arr[] for i in range ( 0 , N - 1 ): # Adding summation of all # distances from ith point ans + = ((pre[N - 1 ] - pre[i]) - (arr[i] * (N - 1 - i))) # Return Average return ans / ((N * (N - 1 )) / 2 ) # Driver Code if __name__ = = "__main__" : arr = [ - 1 , 3 , - 5 , 4 ] print (averageDistance(arr, len (arr))) # This code is contributed by rakeshsahni |
C#
// C# implementation for the above approach using System; class GFG { // Function to find average distance // between given points on a line static double averageDistance( int []arr, int N) { // Sorting the array arr[] Array.Sort(arr); // Stores the prefix sum // array of arr[] int []pre = new int [N]; pre[0] = arr[0]; // Loop to calculate prefix sum for ( int i = 1; i < N; i++) { pre[i] = pre[i - 1] + arr[i]; } // Initialising the answer variable double ans = 0; // Loop to iterate through arr[] for ( int i = 0; i < N - 1; i++) { // Adding summation of all // distances from ith point ans += (pre[N - 1] - pre[i]) - arr[i] * (N - 1 - i); } // Return Average ans = Math.Round((ans / ((N * (N - 1)) / 2)), 5); return ans; } // Driver Code public static void Main() { int []arr = { -1, 3, -5, 4 }; Console.Write(averageDistance(arr, arr.Length)); } } // This code is contributed by Samim Hossain Mondal. |
Javascript
<script> // JavaScript Program to implement // the above approach // Function to find average distance // between given points on a line function averageDistance( arr, N) { // Sorting the array arr[] arr.sort( function (a, b) { return a - b }) // Stores the prefix sum // array of arr[] let pre = new Array(N).fill(0); pre[0] = arr[0]; // Loop to calculate prefix sum for (let i = 1; i < N; i++) { pre[i] = pre[i - 1] + arr[i]; } // Initialising the answer variable let ans = 0; // Loop to iterate through arr[] for (let i = 0; i < N - 1; i++) { // Adding summation of all // distances from ith point ans += (pre[N - 1] - pre[i]) - arr[i] * (N - 1 - i); } // Return Average return ans / ((N * (N - 1)) / 2); } // Driver Code let arr = [-1, 3, -5, 4]; document.write(averageDistance(arr, arr.length).toPrecision(6)); // This code is contributed by Potta Lokesh </script> |
5.16667
Time Complexity: O(N*log N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!