Thursday, January 9, 2025
Google search engine
HomeData Modelling & AICheck if given array can be rearranged such that mean is equal...

Check if given array can be rearranged such that mean is equal to median

Given sorted float array arr[]. Check if arr[] can be rearranged such that its mean is equal to its median.

Examples:

Input: arr[] = {1.0, 3.0, 6.0, 9.0, 12.0, 32.0}
Output: Yes
Explanation: The mean of given array is (1.0 + 3.0 + 6.0 + 9.0 + 12.0 + 32.0) / 6 = 10.5. 
Rearranging given array as {1.0, 3.0, 9.0, 12.0, 6.0, 32.0}, here median is (9.0 + 12.0) / 2 = 10.5

Input: arr[] = {8.0, 13.0, 15.0}
Output: No

 

Approach: The given problem can be solved by using Binary Search and Two Pointers approach. If size of arr[] is odd that means the median is a single element that can be searched by using Binary search. If array size is even then Two pointers approach can be used because then median will be composed of two elements. Follow the steps below to solve the given problem.

  • Initialize a variable say, mean to store mean of arr[].
  • Check if the size of arr[] is even or odd.
    • if size of arr[] is even
      • Use Two Pointers approach to search two elements whose average = mean.
      • Initialize two pointers as i=0, j=n-1.
      • Perform two pointers approach to search for the median in arr[].
    • if size of arr[] is odd
      • Apply Binary Search to find if mean is present in arr[] or not.
  • If it is mean is found return Yes, otherwise No.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <iostream>
using namespace std;
 
// Function to return true or false if
// size of array is odd
bool binarySearch(float arr[], int size, float key)
{
    int low = 0, high = size - 1, mid;
 
    while (low <= high) {
 
        // To prevent overflow
        mid = low + (high - low) / 2;
 
        // If element is greater than mid, then
        // it can only be present in right subarray
        if (key > arr[mid])
            low = mid + 1;
 
        // If element is smaller than mid, then
        // it can only be present in left subarray
        else if (key < arr[mid])
            high = mid - 1;
 
        // Else the element is present at the middle
        // then return 1
        else
            return 1;
    }
 
    // when element is not present
    // in array then return 0
    return 0;
}
 
// Function to return true or false
// if size of array is even
bool twoPointers(float arr[], int N, float mean)
{
 
    int i = 0, j = N - 1;
 
    while (i < j) {
 
        // Calculating Candidate Median
        float temp = (arr[i] + arr[j]) / 2;
 
        // If Candidate Median if greater
        // than Mean then decrement j
        if (temp > mean)
            j--;
 
        // If Candidate Median if less
        // than Mean then increment i
        else if (temp < mean)
            i++;
 
        // If Candidate Median if equal
        // to Mean then return 1
        else
            return 1;
    }
 
    // when No candidate found for mean
    return 0;
}
 
// Function to return true if Mean
// can be equal to any candidate
// median otherwise return false
bool checkArray(float arr[], int N)
{
 
    // Calculating Mean
    float sum = 0;
    for (int i = 0; i < N; i++)
        sum += arr[i];
 
    float mean = sum / N;
 
    // If N is Odd
    if (N & 1)
        return binarySearch(arr, N, mean);
 
    // If N is even
    else
        return twoPointers(arr, N, mean);
}
 
// Driver Code
int main()
{
    float arr[] = { 1.0, 3.0, 6.0, 9.0, 12.0, 32.0 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    if (checkArray(arr, N))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
public class GFG{
 
// Function to return true or false if
// size of array is odd
static boolean binarySearch(float []arr, int size, float key)
{
    int low = 0, high = size - 1, mid;
 
    while (low <= high) {
 
        // To prevent overflow
        mid = low + (high - low) / 2;
 
        // If element is greater than mid, then
        // it can only be present in right subarray
        if (key > arr[mid])
            low = mid + 1;
 
        // If element is smaller than mid, then
        // it can only be present in left subarray
        else if (key < arr[mid])
            high = mid - 1;
 
        // Else the element is present at the middle
        // then return 1
        else
            return true;
    }
 
    // when element is not present
    // in array then return 0
    return false;
}
 
// Function to return true or false
// if size of array is even
static boolean twoPointers(float []arr, int N, float mean)
{
 
    int i = 0, j = N - 1;
 
    while (i < j) {
 
        // Calculating Candidate Median
        float temp = (arr[i] + arr[j]) / 2;
 
        // If Candidate Median if greater
        // than Mean then decrement j
        if (temp > mean)
            j--;
 
        // If Candidate Median if less
        // than Mean then increment i
        else if (temp < mean)
            i++;
 
        // If Candidate Median if equal
        // to Mean then return 1
        else
            return true;
    }
 
    // when No candidate found for mean
    return false;
}
 
// Function to return true if Mean
// can be equal to any candidate
// median otherwise return false
static boolean checkArray(float []arr, int N)
{
 
    // Calculating Mean
    float sum = 0;
    for (int i = 0; i < N; i++)
        sum += arr[i];
 
    float mean = sum / N;
 
    // If N is Odd
    if ((N & 1)!=0)
        return binarySearch(arr, N, mean);
 
    // If N is even
    else
        return twoPointers(arr, N, mean);
}
 
// Driver Code
public static void main(String []args)
{
    float []arr = { 1.0f, 3.0f, 6.0f, 9.0f, 12.0f, 32.0f };
    int N = arr.length;
 
    if (checkArray(arr, N))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
 
// This code is contributed by AnkThon.


Python3




# python program for the above approach
 
# Function to return true or false if
# size of array is odd
def binarySearch(arr, size, key):
 
    low = 0
    high = size - 1
 
    while (low <= high):
 
                # To prevent overflow
        mid = low + (high - low) // 2
 
        # If element is greater than mid, then
        # it can only be present in right subarray
        if (key > arr[mid]):
            low = mid + 1
 
        # If element is smaller than mid, then
        # it can only be present in left subarray
        elif (key < arr[mid]):
            high = mid - 1
 
            # Else the element is present at the middle
            # then return 1
        else:
            return 1
    # when element is not present
    # in array then return 0
    return 0
 
# Function to return true or false
# if size of array is even
def twoPointers(arr, N, mean):
 
    i = 0
    j = N - 1
 
    while (i < j):
 
                # Calculating Candidate Median
        temp = (arr[i] + arr[j]) / 2
 
        # If Candidate Median if greater
        # than Mean then decrement j
        if (temp > mean):
            j = j - 1
 
            # If Candidate Median if less
            # than Mean then increment i
        elif (temp < mean):
            i = i + 1
 
            # If Candidate Median if equal
            # to Mean then return 1
        else:
            return 1
 
        # when No candidate found for mean
    return 0
 
 
# Function to return true if Mean
# can be equal to any candidate
# median otherwise return false
def checkArray(arr, N):
 
        # Calculating Mean
    sum = 0
    for i in range(0, N):
        sum += arr[i]
 
    mean = sum / N
 
    # If N is Odd
    if (N & 1):
        return binarySearch(arr, N, mean)
 
    # If N is even
    else:
        return twoPointers(arr, N, mean)
 
# Driver Code
if __name__ == "__main__":
 
    arr = [1.0, 3.0, 6.0, 9.0, 12.0, 32.0]
    N = len(arr)
    if (checkArray(arr, N)):
        print("Yes")
    else:
        print("No")
 
    # This code is contributed by rakeshsahni


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to return true or false if
// size of array is odd
static bool binarySearch(float []arr, int size, float key)
{
    int low = 0, high = size - 1, mid;
 
    while (low <= high) {
 
        // To prevent overflow
        mid = low + (high - low) / 2;
 
        // If element is greater than mid, then
        // it can only be present in right subarray
        if (key > arr[mid])
            low = mid + 1;
 
        // If element is smaller than mid, then
        // it can only be present in left subarray
        else if (key < arr[mid])
            high = mid - 1;
 
        // Else the element is present at the middle
        // then return 1
        else
            return true;
    }
 
    // when element is not present
    // in array then return 0
    return false;
}
 
// Function to return true or false
// if size of array is even
static bool twoPointers(float []arr, int N, float mean)
{
 
    int i = 0, j = N - 1;
 
    while (i < j) {
 
        // Calculating Candidate Median
        float temp = (arr[i] + arr[j]) / 2;
 
        // If Candidate Median if greater
        // than Mean then decrement j
        if (temp > mean)
            j--;
 
        // If Candidate Median if less
        // than Mean then increment i
        else if (temp < mean)
            i++;
 
        // If Candidate Median if equal
        // to Mean then return 1
        else
            return true;
    }
 
    // when No candidate found for mean
    return false;
}
 
// Function to return true if Mean
// can be equal to any candidate
// median otherwise return false
static bool checkArray(float []arr, int N)
{
 
    // Calculating Mean
    float sum = 0;
    for (int i = 0; i < N; i++)
        sum += arr[i];
 
    float mean = sum / N;
 
    // If N is Odd
    if ((N & 1)!=0)
        return binarySearch(arr, N, mean);
 
    // If N is even
    else
        return twoPointers(arr, N, mean);
}
 
// Driver Code
public static void Main()
{
    float []arr = { 1.0f, 3.0f, 6.0f, 9.0f, 12.0f, 32.0f };
    int N = arr.Length;
 
    if (checkArray(arr, N))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed by SURENDRA_GANGWAR.


Javascript




<script>
    // JavaScript program for the above approach
 
    // Function to return true or false if
    // size of array is odd
    const binarySearch = (arr, size, key) => {
        let low = 0, high = size - 1, mid;
 
        while (low <= high) {
 
            // To prevent overflow
            mid = low + parseInt((high - low) / 2);
 
            // If element is greater than mid, then
            // it can only be present in right subarray
            if (key > arr[mid])
                low = mid + 1;
 
            // If element is smaller than mid, then
            // it can only be present in left subarray
            else if (key < arr[mid])
                high = mid - 1;
 
            // Else the element is present at the middle
            // then return 1
            else
                return 1;
        }
 
        // when element is not present
        // in array then return 0
        return 0;
    }
 
    // Function to return true or false
    // if size of array is even
    const twoPointers = (arr, N, mean) => {
 
        let i = 0, j = N - 1;
 
        while (i < j) {
 
            // Calculating Candidate Median
            let temp = (arr[i] + arr[j]) / 2;
 
            // If Candidate Median if greater
            // than Mean then decrement j
            if (temp > mean)
                j--;
 
            // If Candidate Median if less
            // than Mean then increment i
            else if (temp < mean)
                i++;
 
            // If Candidate Median if equal
            // to Mean then return 1
            else
                return 1;
        }
 
        // when No candidate found for mean
        return 0;
    }
 
    // Function to return true if Mean
    // can be equal to any candidate
    // median otherwise return false
    const checkArray = (arr, N) => {
 
        // Calculating Mean
        let sum = 0;
        for (let i = 0; i < N; i++)
            sum += arr[i];
 
        let mean = sum / N;
 
        // If N is Odd
        if (N & 1)
            return binarySearch(arr, N, mean);
 
        // If N is even
        else
            return twoPointers(arr, N, mean);
    }
 
    // Driver Code
    let arr = [1.0, 3.0, 6.0, 9.0, 12.0, 32.0];
    let N = arr.length;
 
    if (checkArray(arr, N))
        document.write("Yes");
    else
        document.write("No");
 
    // This code is contributed by rakeshsahni
</script>


Output

Yes

Time Complexity: O(N), when N is even.
O(logN), when N is odd.
Auxiliary Space: O(1).

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
24 Sep, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments