Saturday, January 11, 2025
Google search engine
HomeData Modelling & AISort the sides of triangle on the basis of increasing area

Sort the sides of triangle on the basis of increasing area

Given an array arr[] of sides of N triangles, the task is to sort the given sides of triangles on the basis of the increasing order of area.

Examples:

Input: arr[] = {{5, 3, 7}, {15, 20, 4}, {4, 9, 6}, {8, 4, 5}}
Output: {{5, 3, 7}, {8, 4, 5}, {4, 9, 6}, {15, 20, 17}}
Explanation:
Following are the areas of triangle:

  • Area of 1st triangle (5, 3, 7) is 6.4.
  • Area of 2nd triangle (15, 20, 4) is 124.2.
  • Area of 3rd triangle (4, 9, 6) is 9.5.
  • Area of 4th triangle (8, 4, 5) is 8.1.

Therefore, ordering them increasing order of the area modifies the given array as 6.4 {5, 3, 7}, 8.1 {8, 4, 5}, 9.5 {4, 9, 6}, 124.2 {15, 20, 4}.

Input: arr[] = {{7, 24, 25}, {5, 12, 13}, {3, 4, 5}}
Output: {{3, 4, 5}, {5, 12, 13}, {7, 24, 25}}

Approach: The given can be solved by storing the sides with the area of the triangle in another array and then sort the array in increasing order of area stored and then print the sides stored in another array as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to rearrange the sides of
// triangle in increasing order of area
void rearrangeTriangle(
    vector<vector<int> > arr, int N)
{
    // Stores the area of triangles with
    // their corresponding indices
    vector<pair<float, int> > area;
 
    for (int i = 0; i < N; i++) {
 
        // Find the area
        float a = (arr[i][0]
                   + arr[i][1]
                   + arr[i][2])
                  / 2.0;
        float Area = sqrt(abs(a * (a - arr[i][0])
                              * (a - arr[i][1])
                              * (a - arr[i][2])));
 
        area.push_back({ Area, i });
    }
 
    // Sort the area vector
    sort(area.begin(), area.end());
 
    // Resultant sides
    for (int i = 0; i < area.size(); i++) {
        cout << arr[area[i].second][0]
             << " "
             << arr[area[i].second][1]
             << " "
             << arr[area[i].second][2]
             << '\n';
    }
}
 
// Driver Code
int main()
{
    vector<vector<int> > arr = {
        { 5, 3, 7 }, { 15, 20, 4 }, { 4, 9, 6 }, { 8, 4, 5 }
    };
    int N = arr.size();
 
    rearrangeTriangle(arr, N);
 
    return 0;
}


Java




// Java implementation for the above approach
import java.util.List;
import java.util.ArrayList;
import java.util.Collections;
 
public class Main {
    // Function to rearrange the sides of
    // triangle in increasing order of area
    static void rearrangeTriangle(List<List<Integer>> arr, int N)
    {
        // Stores the area of triangles with
        // their corresponding indices
        List<Pair<Float, Integer>> area = new ArrayList<>();
 
        for (int i = 0; i < N; i++) {
            // Find the area
            float a = (float)(arr.get(i).get(0) + arr.get(i).get(1) + arr.get(i).get(2)) / 2;
            float Area = (float) Math.sqrt(Math.abs(a * (a - arr.get(i).get(0)) * (a - arr.get(i).get(1)) * (a - arr.get(i).get(2))));
 
            area.add(new Pair<>(Area, i));
        }
 
        // Sort the area List
        Collections.sort(area, (x, y) -> Float.compare(x.first, y.first));
 
        // Resultant sides
        for (int i = 0; i < area.size(); i++) {
            System.out.println(arr.get(area.get(i).second).get(0) + " " + arr.get(area.get(i).second).get(1) + " " + arr.get(area.get(i).second).get(2));
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
             
        List<List<Integer>> arr = new ArrayList<>(){{
            add(new ArrayList<>(){{ add(5); add(3); add(7); }});
            add(new ArrayList<>(){{ add(15); add(20); add(4); }});
            add(new ArrayList<>(){{ add(4); add(9); add(6); }});
            add(new ArrayList<>(){{ add(8); add(4); add(5); }});
        }};
        int N = arr.size();
 
        rearrangeTriangle(arr, N);
    }
}
 
class Pair<F, S> {
    public F first;
    public S second;
 
    public Pair(F first, S second) {
        this.first = first;
        this.second = second;
    }
}
// This code is contributed by Harshad


Python3




# python program for the above approach
import math
 
# Function to rearrange the sides of
# triangle in increasing order of area
def rearrangeTriangle(arr, N):
 
        # Stores the area of triangles with
        # their corresponding indices
    area = []
 
    for i in range(0, N):
 
                # Find the area
        a = (arr[i][0] + arr[i][1] + arr[i][2]) / 2.0
        Area = math.sqrt(
            abs(a * (a - arr[i][0]) * (a - arr[i][1]) * (a - arr[i][2])))
 
        area.append([Area, i])
 
        # Sort the area vector
    area.sort()
 
    # Resultant sides
    for i in range(0, len(area)):
        print(arr[area[i][1]][0], end=" ")
        print(arr[area[i][1]][1], end=" ")
        print(arr[area[i][1]][2])
 
# Driver Code
if __name__ == "__main__":
 
    arr = [
        [5, 3, 7], [15, 20, 4], [4, 9, 6], [8, 4, 5]
    ]
    N = len(arr)
 
    rearrangeTriangle(arr, N)
 
    # This code is contributed by rakeshsahni


C#




// C# implementation for the above approach
using System;
using System.Collections.Generic;
 
class GFG {
 
  // Function to rearrange the sides of
  // triangle in increasing order of area
  static void rearrangeTriangle(
    List<List<int> > arr, int N)
  {
     
    // Stores the area of triangles with
    // their corresponding indices
    List<KeyValuePair<float, int> > area = new List<KeyValuePair<float, int> >();
 
    for (int i = 0; i < N; i++) {
 
      // Find the area
      float a = (float)(arr[i][0]
                        + arr[i][1]
                        + arr[i][2])
        / 2;
      float Area = (float)Math.Sqrt(Math.Abs(a * (a - arr[i][0])
                                             * (a - arr[i][1])
                                             * (a - arr[i][2])));
 
      area.Add(new KeyValuePair <float, int>(Area, i ));
    }
 
    // Sort the area List
    area.Sort((x, y) => x.Key.CompareTo(y.Key));
 
    // Resultant sides
    for (int i = 0; i < area.Count; i++) {
      Console.WriteLine(arr[area[i].Value][0] + " "
                        + arr[area[i].Value][1]
                        + " "
                        + arr[area[i].Value][2]);
    }
  }
 
  // Driver Code
  static public void Main ()
  {
    List<List<int> > arr = new List<List<int> >(){
      new List<int>(){ 5, 3, 7 },
      new List<int>(){ 15, 20, 4 },
      new List<int>(){ 4, 9, 6 },
      new List<int>(){ 8, 4, 5 }
    };
    int N = arr.Count;
 
    rearrangeTriangle(arr, N);
  }
}
 
// This code is contributed
// by Shubham Singh


Javascript




<script>
        // JavaScript Program to implement
        // the above approach
 
        // Function to rearrange the sides of
        // triangle in increasing order of area
        function rearrangeTriangle(
            arr, N)
        {
         
            // Stores the area of triangles with
            // their corresponding indices
            let area = [];
 
            for (let i = 0; i < N; i++) {
 
                // Find the area
                let a = (arr[i][0]
                    + arr[i][1]
                    + arr[i][2])
                    / 2.0;
                let Area = Math.sqrt(Math.abs(a * (a - arr[i][0])
                    * (a - arr[i][1])
                    * (a - arr[i][2])));
 
                area.push({ first: parseInt(Area), second: parseInt(i) });
            }
 
            // Sort the area vector
            area.sort(function (a, b) {
                return a.first - b.first;
            })
 
            // Resultant sides
            for (let i = 0; i < area.length; i++) {
                document.write(arr[area[i].second][0]
                    + " "
                    + arr[area[i].second][1]
                    + " "
                    + arr[area[i].second][2]
                    + '<br>'
                )
            }
        }
 
        // Driver Code
        let arr = [
            [5, 3, 7], [15, 20, 4], [4, 9, 6], [8, 4, 5]
        ];
        let N = arr.length;
        rearrangeTriangle(arr, N);
 
       // This code is contributed by Potta Lokesh
 
    </script>


Output: 

5 3 7
8 4 5
4 9 6
15 20 4

 

Time Complexity: O(N*log N)
Auxiliary Space: O(N)

Space Optimized Approach: The above approach can also be optimized in terms of space, the idea is to use the comparator function to sort the given array in increasing order of area. Below is the comparator function that is used:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the area of sides
// of triangle stored in arr[]
float findArea(vector<int>& arr)
{
 
    // Find the semi perimeter
    float a = (arr[0]
               + arr[1]
               + arr[2])
              / 2.0;
 
    // Find area using Heron's Formula
    float Area = sqrt(abs(a * (a - arr[0])
                          * (a - arr[1])
                          * (a - arr[2])));
 
    // Return the area
    return Area;
}
 
// Comparator function to sort the given
// array of sides of triangles in
// increasing order of area
bool cmp(vector<int>& A, vector<int>& B)
{
    return findArea(A) <= findArea(B);
}
 
// Function to rearrange the sides of
// triangle in increasing order of area
void rearrangeTriangle(
    vector<vector<int> > arr, int N)
{
    // Sort the array arr[] in increasing
    // order of area
    sort(arr.begin(), arr.end(), cmp);
 
    // Resultant sides
    for (int i = 0; i < N; i++) {
        cout << arr[i][0] << " " << arr[i][1] << " "
             << arr[i][2] << '\n';
    }
}
 
// Driver Code
int main()
{
    vector<vector<int> > arr = {
        { 5, 3, 7 }, { 15, 20, 4 }, { 4, 9, 6 }, { 8, 4, 5 }
    };
    int N = arr.size();
 
    rearrangeTriangle(arr, N);
 
    return 0;
}


Java




// Java Program to implement the above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
  static double findArea(int[] arr)
  {
     
    // Find the semi perimeter
    double a = (arr[0] + arr[1] + arr[2]) / 2.0;
     
    // Find area using Heron's Formula
    double area = Math.sqrt(
      Math.abs(a * (a - arr[0]) * (a - arr[1])
               * (a - arr[2])));
     
    // Return the area
    return area;
  }
 
  static int[][] rearrangeTriangle(int[][] arr)
  {
    // Sort the array arr[] in increasing order of area
    Arrays.sort(arr,
                (a, b)
                -> Double.compare(findArea(a),
                                  findArea(b)));
    return arr;
  }
 
  public static void main(String[] args)
  {
    int[][] arr = { { 5, 3, 7 },
                   { 15, 20, 4 },
                   { 4, 9, 6 },
                   { 8, 4, 5 } };
    int[][] result = rearrangeTriangle(arr);
    for (int i = 0; i < result.length; i++) {
      System.out.println(result[i][0] + " "
                         + result[i][1] + " "
                         + result[i][2]);
    }
  }
}
 
// This code is contributed by lokeshmvs21.


Python3




# Python program for the above approach
import math
 
# Function to find the area of sides
# of triangle stored in arr[]
def findArea(arr):
 
    # Find the semi perimeter
    a = (arr[0] + arr[1] + arr[2]) / 2.0
     
    # Find area using Heron's Formula
    Area = math.sqrt(abs(a * (a - arr[0]) * (a - arr[1]) * (a - arr[2])))
     
    # Return the area
    return Area
   
# Function to rearrange the sides of
# triangle in increasing order of area
def rearrangeTriangle(arr , N):
   
  # Sort the array arr[] in increasing
  # order of area
  arr.sort(key = lambda x: (findArea(x)))
   
  # Resultant sides
  for i in range(0,N):
    print(arr[i][0], arr[i][1], arr[i][2])
              
# Driver Code
if __name__ == "__main__":
 
    arr = [[5 , 3 , 7], [15 , 20 , 4], [4 , 9 , 6], [8 , 4 , 5]]
    N = len(arr)
     
    rearrangeTriangle(arr, N)
     
    # This code is contributed by bhupenderyadav18.


C#




using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG {
    static float FindArea(List<int> arr) {
        // Find the semi perimeter
        float a = (arr[0] + arr[1] + arr[2]) / 2.0f;
 
        // Find area using Heron's Formula
        float Area = (float)Math.Sqrt(Math.Abs(a * (a - arr[0]) * (a - arr[1]) *
                                                                  (a - arr[2])));
 
        // Return the area
        return Area;
    }
 
    static int Compare(List<int> A, List<int> B) {
        float areaA = FindArea(A);
        float areaB = FindArea(B);
        if (areaA < areaB) {
            return -1;
        } else if (areaA > areaB) {
            return 1;
        } else {
            return 0;
        }
    }
 
    static void RearrangeTriangle(List<List<int>> arr, int N) {
        // Sort the array arr[] in increasing order of area
        arr.Sort(Compare);
 
        // Resultant sides
        for (int i = 0; i < N; i++) {
            Console.Write("{0} {1} {2}", arr[i][0], arr[i][1], arr[i][2]+"\n");
        }
    }
 
    static void Main() {
        List<List<int>> arr = new List<List<int>> {
            new List<int> { 5, 3, 7 },
            new List<int> { 15, 20, 4 },
            new List<int> { 4, 9, 6 },
            new List<int> { 8, 4, 5 }
        };
        int N = arr.Count();
 
        RearrangeTriangle(arr, N);
    }
}


Javascript




<script>
        // JavaScript Program to implement
        // the above approach
         
        // Function to find the area of sides
        // of triangle stored in arr[]
       function findArea(arr)
       {
  
         // Find the semi perimeter
         let a = (arr[0] + arr[1] + arr[2]) / 2.0;
  
         // Find area using Heron's Formula
         let Area = Math.sqrt(Math.abs(a * (a - arr[0]) * (a - arr[1])* (a - arr[2])));
  
         // Return the area
         return Area;
        }
         
        // Comparator function to sort the given
        // array of sides of triangles in
        // increasing order of area
        function cmp(A, B)
        {
            return findArea(A) - findArea(B);
        }
         
 
        // Function to rearrange the sides of
        // triangle in increasing order of area
        function rearrangeTriangle(arr, N)
        {
            // Sort the array arr[] in increasing
            // order of area
            arr.sort(function (a, b) {
                return cmp(a,b);
            })
 
            // Resultant sides
            for (let i = 0; i < N; i++) {
                document.write(arr[i][0]
                    + " "
                    + arr[i][1]
                    + " "
                    + arr[i][2]
                    + '<br>'
                )
            }
        }
 
        // Driver Code
        let arr = [
            [5, 3, 7], [15, 20, 4], [4, 9, 6], [8, 4, 5]
        ];
        let N = arr.length;
        rearrangeTriangle(arr, N);
 
    // This code is contributed by Pushpesh Raj
 
    </script>


Output: 

5 3 7
8 4 5
4 9 6
15 20 4

 

Time Complexity: O(N*log N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
30 Jan, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments