Friday, January 10, 2025
Google search engine
HomeData Modelling & AIWedderburn–Etherington number

Wedderburn–Etherington number

The Nth term in the Wedderburn–Etherington number sequence (starting with the number 0 for n = 0) counts the number of unordered rooted trees with n leaves in which all nodes including the root have either zero or exactly two children. 
For a given N. The task is to find first N terms of the sequence.
Sequence: 
 

0, 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, …. 
 

Trees with 0 or 2 childs: 
 

Examples: 
 

Input : N = 10 
Output : 0, 1, 1, 1, 2, 3, 6, 11, 23, 46,
Input : N = 20 
Output : 0, 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, 127912 
 

 

Approach: 
The Recurrence relation to find Nth number is: 
 

  • a(2x-1) = a(1) * a(2x-2) + a(2) * a(2x-3) + … + a(x-1) * a(x)
  • a(2x) = a(1) * a(2x-1) + a(2) * a(2x-2) + … + a(x-1) * a(x+1) + a(x) * (a(x)+1)/2

Using the above relation we can find the ith term of the series. We will start from the 0th term and then store the answer in a map and then use the values in the map to find the i+1 th term of the series. we will also use base cases for the 0th, 1st and 2nd element which are 0, 1, 1 respectively. 
Below is the implementation of the above approach : 
 

C++




// CPP program to find N terms of the sequence
#include <bits/stdc++.h>
using namespace std;
 
// Stores the Wedderburn Etherington numbers
map<int, int> store;
 
// Function to return the nth
// Wedderburn Etherington numbers
int Wedderburn(int n)
{
    // Base case
    if (n <= 2)
        return store[n];
 
    // If n is even n = 2x
    else if (n % 2 == 0)
    {
        // get x
        int x = n / 2, ans = 0;
 
        // a(2x) = a(1)a(2x-1) + a(2)a(2x-2) + ... +
        // a(x-1)a(x+1)
        for (int i = 1; i < x; i++) {
            ans += store[i] * store[n - i];
        }
 
        // a(x)(a(x)+1)/2
        ans += (store[x] * (store[x] + 1)) / 2;
 
        // Store the ans
        store[n] = ans;
         
        // Return the required answer
        return ans;
    }
     
    else
    {
        // If n is odd
        int x = (n + 1) / 2, ans = 0;
 
        // a(2x-1) = a(1)a(2x-2) + a(2)a(2x-3) + ... +
        // a(x-1)a(x),
        for (int i = 1; i < x; i++) {
            ans += store[i] * store[n - i];
        }
 
        // Store the ans
        store[n] = ans;
         
        // Return the required answer
        return ans;
    }
}
 
 
// Function to print first N
// Wedderburn Etherington numbers
void Wedderburn_Etherington(int n)
{
    // Store first 3 numbers
    store[0] = 0;
    store[1] = 1;
    store[2] = 1;
     
    // Print N terms
    for (int i = 0; i < n; i++)
    {
        cout << Wedderburn(i);
        if(i!=n-1)
            cout << ", ";
    }
}
 
// Driver code
int main()
{
    int n = 10;
 
    // function call
    Wedderburn_Etherington(n);
 
    return 0;
}


Java




// Java program to find N terms of the sequence
import java.util.*;
 
class GFG
{
 
// Stores the Wedderburn Etherington numbers
static HashMap<Integer,
               Integer> store = new HashMap<Integer,
                                            Integer>();
 
// Function to return the nth
// Wedderburn Etherington numbers
static int Wedderburn(int n)
{
    // Base case
    if (n <= 2)
        return store.get(n);
 
    // If n is even n = 2x
    else if (n % 2 == 0)
    {
        // get x
        int x = n / 2, ans = 0;
 
        // a(2x) = a(1)a(2x-1) + a(2)a(2x-2) + ... +
        // a(x-1)a(x+1)
        for (int i = 1; i < x; i++)
        {
            ans += store.get(i) * store.get(n - i);
        }
 
        // a(x)(a(x)+1)/2
        ans += (store.get(x) * (store.get(x) + 1)) / 2;
 
        // Store the ans
        store. put(n, ans);
         
        // Return the required answer
        return ans;
    }
    else
    {
        // If n is odd
        int x = (n + 1) / 2, ans = 0;
 
        // a(2x-1) = a(1)a(2x-2) + a(2)a(2x-3) + ... +
        // a(x-1)a(x),
        for (int i = 1; i < x; i++)
        {
            ans += store.get(i) * store.get(n - i);
        }
 
        // Store the ans
        store. put(n, ans);
         
        // Return the required answer
        return ans;
    }
}
 
// Function to print first N
// Wedderburn Etherington numbers
static void Wedderburn_Etherington(int n)
{
    // Store first 3 numbers
    store. put(0, 0);
    store. put(1, 1);
    store. put(2, 1);
     
    // Print N terms
    for (int i = 0; i < n; i++)
    {
        System.out.print(Wedderburn(i));
        if(i != n - 1)
            System.out.print(" ");
    }
}
 
// Driver code
public static void main(String[] args)
{
    int n = 10;
 
    // function call
    Wedderburn_Etherington(n);   
}
}
 
// This code is contributed by Princi Singh


Python3




# Python3 program to find N terms
# of the sequence
 
# Stores the Wedderburn Etherington numbers
store = dict()
 
# Function to return the nth
# Wedderburn Etherington numbers
def Wedderburn(n):
     
    # Base case
    if (n <= 2):
        return store[n]
 
    # If n is even n = 2x
    elif (n % 2 == 0):
         
        # get x
        x = n // 2
        ans = 0
 
        # a(2x) = a(1)a(2x-1) + a(2)a(2x-2) + ... +
        # a(x-1)a(x+1)
        for i in range(1, x):
            ans += store[i] * store[n - i]
 
        # a(x)(a(x)+1)/2
        ans += (store[x] * (store[x] + 1)) // 2
 
        # Store the ans
        store[n] = ans
 
        # Return the required answer
        return ans
    else:
         
        # If n is odd
        x = (n + 1) // 2
        ans = 0
 
        # a(2x-1) = a(1)a(2x-2) + a(2)a(2x-3) + ... +
        # a(x-1)a(x),
        for i in range(1, x):
            ans += store[i] * store[n - i]
 
        # Store the ans
        store[n] = ans
 
        # Return the required answer
        return ans
 
# Function to print first N
# Wedderburn Etherington numbers
def Wedderburn_Etherington(n):
 
    # Store first 3 numbers
    store[0] = 0
    store[1] = 1
    store[2] = 1
 
    # Print N terms
    for i in range(n):
        print(Wedderburn(i), end = "")
        if(i != n - 1):
            print(end = ", ")
 
# Driver code
n = 10
 
# function call
Wedderburn_Etherington(n)
 
# This code is contributed by Mohit Kumar


C#




// C# program to find N terms of the sequence
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Stores the Wedderburn Etherington numbers
static Dictionary<int,
                  int> store = new Dictionary<int,
                                              int>();
 
// Function to return the nth
// Wedderburn Etherington numbers
static int Wedderburn(int n)
{
    // Base case
    if (n <= 2)
        return store[n];
 
    // If n is even n = 2x
    else if (n % 2 == 0)
    {
        // get x
        int x = n / 2, ans = 0;
 
        // a(2x) = a(1)a(2x-1) + a(2)a(2x-2) + ... +
        // a(x-1)a(x+1)
        for (int i = 1; i < x; i++)
        {
            ans += store[i] * store[n - i];
        }
 
        // a(x)(a(x)+1)/2
        ans += (store[x] * (store[x] + 1)) / 2;
 
        // Store the ans
        if(store.ContainsKey(n))
        {
            store.Remove(n);
            store.Add(n, ans);
        }
        else
            store.Add(n, ans);
         
        // Return the required answer
        return ans;
    }
    else
    {
        // If n is odd
        int x = (n + 1) / 2, ans = 0;
 
        // a(2x-1) = a(1)a(2x-2) + a(2)a(2x-3) + ... +
        // a(x-1)a(x),
        for (int i = 1; i < x; i++)
        {
            ans += store[i] * store[n - i];
        }
 
        // Store the ans
        if(store.ContainsKey(n))
        {
            store.Remove(n);
            store.Add(n, ans);
        }
        else
            store.Add(n, ans);
         
        // Return the required answer
        return ans;
    }
}
 
// Function to print first N
// Wedderburn Etherington numbers
static void Wedderburn_Etherington(int n)
{
    // Store first 3 numbers
    store.Add(0, 0);
    store.Add(1, 1);
    store.Add(2, 1);
     
    // Print N terms
    for (int i = 0; i < n; i++)
    {
        Console.Write(Wedderburn(i));
        if(i != n - 1)
            Console.Write(" ");
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 10;
 
    // function call
    Wedderburn_Etherington(n);
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// Javascript program to find N terms of the sequence
 
// Stores the Wedderburn Etherington numbers
var store = new Map();
 
// Function to return the nth
// Wedderburn Etherington numbers
function Wedderburn(n)
{
    // Base case
    if (n <= 2)
        return store[n];
 
    // If n is even n = 2x
    else if (n % 2 == 0)
    {
     
        // get x
        var x = parseInt(n / 2), ans = 0;
 
        // a(2x) = a(1)a(2x-1) + a(2)a(2x-2) + ... +
        // a(x-1)a(x+1)
        for (var i = 1; i < x; i++) {
            ans += store[i] * store[n - i];
        }
 
        // a(x)(a(x)+1)/2
        ans += (store[x] * (store[x] + 1)) / 2;
 
        // Store the ans
        store[n] = ans;
         
        // Return the required answer
        return ans;
    }
     
    else
    {
     
        // If n is odd
        var x = (n + 1) / 2, ans = 0;
 
        // a(2x-1) = a(1)a(2x-2) + a(2)a(2x-3) + ... +
        // a(x-1)a(x),
        for (var i = 1; i < x; i++) {
            ans += store[i] * store[n - i];
        }
 
        // Store the ans
        store[n] = ans;
         
        // Return the required answer
        return ans;
    }
}
 
 
// Function to print first N
// Wedderburn Etherington numbers
function Wedderburn_Etherington(n)
{
    // Store first 3 numbers
    store[0] = 0;
    store[1] = 1;
    store[2] = 1;
     
    // Print N terms
    for (var i = 0; i < n; i++)
    {
        document.write( Wedderburn(i));
        if(i != n - 1)
            document.write( ", ");
    }
}
 
// Driver code
var n = 10;
 
// function call
Wedderburn_Etherington(n);
 
// This code is contributed by rrrtnx.
</script>


Output: 
 

0, 1, 1, 1, 2, 3, 6, 11, 23, 46

Time Complexity: O(n2logn)

Auxiliary Space: O(n)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
04 Jun, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments