Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIRepresent (2 / N) as the sum of three distinct positive integers...

Represent (2 / N) as the sum of three distinct positive integers of the form (1 / m)

Given a positive integer N, the task is to represent the fraction 2 / N as the sum of three distinct positive integers of the form 1 / m i.e. (2 / N) = (1 / x) + (1 / y) + (1 / z) and print x, y and z.
Examples: 
 

Input: N = 3 
Output: 3 4 12 
(1 / 3) + (1 / 4) + (1 / 12) = ((4 + 3 + 1) / 12) 
= (8 / 12) = (2 / 3) i.e. 2 / N
Input: N = 28 
Output: 28 29 812 
 

 

Approach: It can be easily inferred that for N = 1, there will be no solution. For N > 1, (2 / N) can be represented as (1 / N) + (1 / N) and the problem gets reduced to representing it as a sum of two fractions. Now, find the difference between (1 / N) and 1 / (N + 1) and get the fraction 1 / (N * (N + 1)). Therefore, the solution is (2 / N) = (1 / N) + (1 / (N + 1)) + (1 / (N * (N + 1))) where x = N, y = N + 1 and z = N * (N + 1).
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the required fractions
void find_numbers(int N)
{
    // Base condition
    if (N == 1) {
        cout << -1;
    }
 
    // For N > 1
    else {
        cout << N << " " << N + 1 << " "
             << N * (N + 1);
    }
}
 
// Driver code
int main()
{
    int N = 5;
 
    find_numbers(N);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// Function to find the required fractions
static void find_numbers(int N)
{
    // Base condition
    if (N == 1)
    {
        System.out.print(-1);
    }
 
    // For N > 1
    else
    {
        System.out.print(N + " " + (N + 1) +
                             " " + (N * (N + 1)));
    }
}
 
// Driver code
public static void main(String []args)
{
    int N = 5;
 
    find_numbers(N);
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python3 implementation of the approach
 
# Function to find the required fractions
def find_numbers(N) :
 
    # Base condition
    if (N == 1) :
        print(-1, end = "");
 
    # For N > 1
    else :
        print(N, N + 1 , N * (N + 1));
 
# Driver code
if __name__ == "__main__" :
 
    N = 5;
 
    find_numbers(N);
     
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to find the required fractions
static void find_numbers(int N)
{
    // Base condition
    if (N == 1)
    {
        Console.Write(-1);
    }
 
    // For N > 1
    else
    {
        Console.Write(N + " " + (N + 1) +
                          " " + (N * (N + 1)));
    }
}
 
// Driver code
public static void Main(String []args)
{
    int N = 5;
 
    find_numbers(N);
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// javascript implementation of the approach   
// Function to find the required fractions
    function find_numbers(N)
    {
     
        // Base condition
        if (N == 1) {
            document.write(-1);
        }
 
        // For N > 1
        else {
            document.write(N + " " + (N + 1) + " " + (N * (N + 1)));
        }
    }
 
    // Driver code
        var N = 5;
        find_numbers(N);
 
// This code is contributed by gauravrajput1
</script>


Output: 

5 6 30

 

Time Complexity: O(1), since no loop is used all operations takes constant time to perform all operations

Auxiliary Space: O(1), since no extra array is used hence space taken up by the algorithm is constant

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
07 Aug, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments