Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AICount array elements whose all distinct digits appear in K

Count array elements whose all distinct digits appear in K

Given an array arr[] consisting of N positive integers and a positive integer K, the task is to find the count of array elements whose distinct digits are a subset of the digits of K.

Examples:

Input: arr[] = { 1, 12, 1222, 13, 2 }, K = 12
Output: 4
Explanation: 
Distinct Digits of K are { 1, 2 } 
Distinct Digits of arr[0] are { 1 }, which is the subset of the digits of K. 
Distinct Digits of arr[1] are { 1, 2 }, which is the subset of the digits of K. 
Distinct Digits of arr[2] are { 1, 2 }, which is the subset of the digits of K. 
Distinct Digits of arr[3] are { 1, 3 }, which is not the subset of the digits of K. 
Distinct Digits of arr[4] are { 2 }, which is the subset of the digits of K. 
Therefore, the required output is 4. 

Input: arr = {1, 2, 3, 4, 1234}, K = 1234
Output: 5

Naive Approach: The simplest approach to solve the problem is to traverse the array arr[] and for each array element, check if all its distinct digits appear in K or not. If found to be true, then increment the count. Finally, print the count obtained.

Below is the implementation of the above approach:

C++14




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check a digit occurs
// in the digit of K or not
static bool isValidDigit(int digit, int K)
{
     
    // Iterate over all possible
    // digits of K
    while (K != 0)
    {
         
        // If current digit
        // equal to digit
        if (K % 10 == digit)
        {
            return true;
        }
         
        // Update K
        K = K / 10;
    }
    return false;
}
 
// Function to find the count of array
// elements whose distinct digits are
// a subset of digits of K
int noOfValidNumbers(int K, int arr[], int n)
{
     
    // Stores count of array elements
    // whose distinct digits are subset
    // of digits of K
    int count = 0;
 
    // Traverse the array, []arr
    for(int i = 0; i < n; i++)
    {
         
        // Stores the current element
        int no = arr[i];
 
        // Check if all the digits arr[i]
        // is a subset of the digits of
        // K or not
        bool flag = true;
 
        // Iterate over all possible
        // digits of arr[i]
        while (no != 0)
        {
             
            // Stores current digit
            int digit = no % 10;
             
            // If current digit does not
            // appear in K
            if (!isValidDigit(digit, K))
            {
                 
                // Update flag
                flag = false;
                break;
            }
             
            // Update no
            no = no / 10;
        }
 
        // If all the digits arr[i]
        // appear in K
        if (flag == true)
        {
             
            // Update count
            count++;
        }
    }
 
    // Finally print count
    return count;
}
 
// Driver Code
int main()
{
    int K = 12;
    int arr[] = { 1, 12, 1222, 13, 2 };
    int n = sizeof(arr) / sizeof(arr[0]);
         
    cout << noOfValidNumbers(K, arr, n);
     
    return 0;
}
 
// This code is contributed by susmitakundugoaldanga


Java




// Java program for the above approach
import java.io.*;
 
class GFG {
 
    // Function to check a digit occurs
    // in the digit of K or not
    static boolean isValidDigit(int digit, int K)
    {
        // Iterate over all possible
        // digits of K
        while (K != 0) {
 
            // If current digit
            // equal to digit
            if (K % 10 == digit) {
                return true;
            }
 
            // Update K
            K = K / 10;
        }
 
        return false;
    }
 
    // Function to find the count of array elements
    // whose distinct digits are a subset of digits of K
    static int noOfValidNumbers(int K, int arr[])
    {
 
        // Stores count of array elements
        // whose distinct digits are subset
        // of digits of K
        int count = 0;
 
        // Traverse the array, arr[]
        for (int i = 0; i < arr.length; i++) {
 
            // Stores the current element
            int no = arr[i];
 
            // Check if all the digits arr[i]
            // is a subset of the digits of
            // K or not
            boolean flag = true;
 
            // Iterate over all possible
            // digits of arr[i]
            while (no != 0) {
 
                // Stores current digit
                int digit = no % 10;
 
                // If current digit does not
                // appear in K
                if (!isValidDigit(digit, K)) {
 
                    // Update flag
                    flag = false;
                    break;
                }
 
                // Update no
                no = no / 10;
            }
 
            // If all the digits arr[i] appear in K
            if (flag == true) {
 
                // Update count
                count++;
            }
        }
 
        // Finally print count
        return count;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int K = 12;
        int arr[] = { 1, 12, 1222, 13, 2 };
        System.out.println(noOfValidNumbers(K, arr));
    }
}


Python3




# Python3 program for the above approach
 
# Function to check a digit occurs
# in the digit of K or not
def isValidDigit(digit, K):
 
    # Iterate over all possible
    # digits of K
    while (K != 0):
 
        # If current digit
        # equal to digit
        if (K % 10 == digit):
            return True
 
        # Update K
        K = K // 10
    return False
 
# Function to find the count of array
# elements whose distinct digits are
# a subset of digits of K
def noOfValidNumbers(K, arr, n):
 
    # Stores count of array elements
    # whose distinct digits are subset
    # of digits of K
    count = 0
 
    # Traverse the array, []arr
    for i in range(n):
 
        # Stores the current element
        no = arr[i]
 
        # Check if all the digits arr[i]
        # is a subset of the digits of
        # K or not
        flag = True
 
        # Iterate over all possible
        # digits of arr[i]
        while (no != 0):
 
            # Stores current digit
            digit = no % 10
 
            # If current digit does not
            # appear in K
            if (not isValidDigit(digit, K)):
 
                # Update flag
                flag = False
                break
 
            # Update no
            no = no // 10
 
        # If all the digits arr[i]
        # appear in K
        if (flag == True):
 
            # Update count
            count += 1
 
    # Finally print count
    return count
 
# Driver Code
if __name__ == "__main__":
    K = 12
    arr = [1, 12, 1222, 13, 2]
    n = len(arr)
    print(noOfValidNumbers(K, arr, n))
 
    # This code is contributed by chitranayal.


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to check a digit occurs
// in the digit of K or not
static bool isValidDigit(int digit, int K)
{
     
    // Iterate over all possible
    // digits of K
    while (K != 0)
    {
         
        // If current digit
        // equal to digit
        if (K % 10 == digit)
        {
            return true;
        }
 
        // Update K
        K = K / 10;
    }
 
    return false;
}
 
// Function to find the count of array elements
// whose distinct digits are a subset of digits of K
static int noOfValidNumbers(int K, int []arr)
{
     
    // Stores count of array elements
    // whose distinct digits are subset
    // of digits of K
    int count = 0;
 
    // Traverse the array, []arr
    for(int i = 0; i < arr.Length; i++)
    {
         
        // Stores the current element
        int no = arr[i];
 
        // Check if all the digits arr[i]
        // is a subset of the digits of
        // K or not
        bool flag = true;
 
        // Iterate over all possible
        // digits of arr[i]
        while (no != 0)
        {
             
            // Stores current digit
            int digit = no % 10;
 
            // If current digit does not
            // appear in K
            if (!isValidDigit(digit, K))
            {
                 
                // Update flag
                flag = false;
                break;
            }
             
            // Update no
            no = no / 10;
        }
 
        // If all the digits arr[i] appear in K
        if (flag == true)
        {
             
            // Update count
            count++;
        }
    }
 
    // Finally print count
    return count;
}
 
// Driver Code
public static void Main(String[] args)
{
    int K = 12;
    int []arr = { 1, 12, 1222, 13, 2 };
     
    Console.WriteLine(noOfValidNumbers(K, arr));
}
}
 
// This code is contributed by shikhasingrajput


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to check a digit occurs
// in the digit of K or not
function isValidDigit(digit, K)
{
     
    // Iterate over all possible
    // digits of K
    while (K != 0)
    {
         
        // If current digit
        // equal to digit
        if (K % 10 == digit)
        {
            return true;
        }
         
        // Update K
        K = parseInt(K / 10);
    }
    return false;
}
 
// Function to find the count of array
// elements whose distinct digits are
// a subset of digits of K
function noOfValidNumbers(K, arr, n)
{
     
    // Stores count of array elements
    // whose distinct digits are subset
    // of digits of K
    let count = 0;
 
    // Traverse the array, []arr
    for(let i = 0; i < n; i++)
    {
         
        // Stores the current element
        let no = arr[i];
 
        // Check if all the digits arr[i]
        // is a subset of the digits of
        // K or not
        let flag = true;
 
        // Iterate over all possible
        // digits of arr[i]
        while (no != 0)
        {
             
            // Stores current digit
            let digit = no % 10;
             
            // If current digit does not
            // appear in K
            if (!isValidDigit(digit, K))
            {
                 
                // Update flag
                flag = false;
                break;
            }
             
            // Update no
            no = parseInt(no / 10);
        }
 
        // If all the digits arr[i]
        // appear in K
        if (flag == true)
        {
             
            // Update count
            count++;
        }
    }
 
    // Finally print count
    return count;
}
 
// Driver Code
    let K = 12;
    let arr = [ 1, 12, 1222, 13, 2 ];
    let n = arr.length;
         
    document.write(noOfValidNumbers(K, arr, n));
     
</script>


Output: 

4

 

Time Complexity: O(N * log10(K) * log10(Max)), Max is the largest array element 
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized using a HashSet. Follow the steps below to solve the problem:

  • Iterate over the digits of K and insert all the digits into a HashSet say set
  • Traverse the array arr[] and for every array element, iterate over all the digits of the current element and check if all the digits are present in the set or not. If found to be true, then increment the count.
  • Finally, print the count obtained.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to the count of array elements whose
// distinct digits are a subset of the digits of K
static int noOfValidKbers(int K, vector<int> arr)
{
 
    // Stores distinct digits of K
    map<int,int> set;
 
    // Iterate over all the digits of K
    while (K != 0)
    {
 
        // Insert current digit into set
        set[K % 10] = 1;
 
        // Update K
        K = K / 10;
    }
 
    // Stores the count of array elements
    // whose distinct digits are a subset
    // of the digits of K
    int count = 0;
 
    // Traverse the array, arr[]
    for (int i = 0; i < arr.size(); i++)
    {
 
        // Stores current element
        int no = arr[i];
 
        // Check if all the digits of arr[i]
        // are present in K or not
        bool flag = true;
 
        // Iterate over all the digits of arr[i]
        while (no != 0)
        {
 
            // Stores current digit
            int digit = no % 10;
 
            // If digit not present in the set
            if (set.find(digit)==set.end())
            {
 
                // Update flag
                flag = false;
                break;
            }
 
            // Update no
            no = no / 10;
        }
 
        // If all the digits of
        // arr[i] present in set
        if (flag == true)
        {
 
            // Update count
            count++;
        }
    }
    return count;
}
 
// Driver Code
int main()
{
    int K = 12;
    vector<int> arr = { 1, 12, 1222, 13, 2 };
    cout<<(noOfValidKbers(K, arr));
}
 
// This code is contributed by mohit kumar 29


Java




// Java program to implement
// the above approach
 
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to the count of array elements whose
    // distinct digits are a subset of the digits of K
    static int noOfValidKbers(int K, int arr[])
    {
 
        // Stores distinct digits of K
        HashSet<Integer> set = new HashSet<>();
 
        // Iterate over all the digits of K
        while (K != 0) {
 
            // Insert current digit into set
            set.add(K % 10);
 
            // Update K
            K = K / 10;
        }
 
        // Stores the count of array elements
        // whose distinct digits are a subset
        // of the digits of K
        int count = 0;
 
        // Traverse the array, arr[]
        for (int i = 0; i < arr.length; i++) {
 
            // Stores current element
            int no = arr[i];
 
            // Check if all the digits of arr[i]
            // are present in K or not
            boolean flag = true;
 
            // Iterate over all the digits of arr[i]
            while (no != 0) {
 
                // Stores current digit
                int digit = no % 10;
 
                // If digit not present in the set
                if (!set.contains(digit)) {
 
                    // Update flag
                    flag = false;
                    break;
                }
 
                // Update no
                no = no / 10;
            }
 
            // If all the digits of
            // arr[i] present in set
            if (flag == true) {
 
                // Update count
                count++;
            }
        }
        return count;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int K = 12;
        int arr[] = { 1, 12, 1222, 13, 2 };
        System.out.println(noOfValidKbers(K, arr));
    }
}


Python3




# Python 3 program to implement
# the above approach
 
# Function to the count of array elements whose
# distinct digits are a subst of the digits of K
def noOfValidKbers(K, arr):
   
    # Stores distinct digits of K
    st = {}
 
    # Iterate over all the digits of K
    while(K != 0):
       
        # Insert current digit into st
        if(K % 10 in st):
            st[K % 10] = 1
        else:
            st[K % 10] = st.get(K % 10, 0) + 1
 
        # Update K
        K = K // 10
 
    # Stores the count of array elements
    # whose distinct digits are a subst
    # of the digits of K
    count = 0
 
    # Traverse the array, arr[]
    for i in range(len(arr)):
       
        # Stores current element
        no = arr[i]
 
        # Check if all the digits of arr[i]
        # are present in K or not
        flag = True
 
        # Iterate over all the digits of arr[i]
        while(no != 0):
           
            # Stores current digit
            digit = no % 10
 
            # If digit not present in the st
            if (digit not in st):
               
                # Update flag
                flag = False
                break
 
            # Update no
            no = no//10
             
        # If all the digits of
        # arr[i] present in st
        if (flag == True):
           
            # Update count
            count += 1
    return count
 
# Driver Code
if __name__ == '__main__':
    K = 12
    arr =  [1, 12, 1222, 13, 2]
    print(noOfValidKbers(K, arr))
     
    # This code is contributed by SURENDRA_GANGWAR.


C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to the count of array elements whose
// distinct digits are a subset of the digits of K
static int noOfValidKbers(int K, int []arr)
{
     
    // Stores distinct digits of K
    HashSet<int> set = new HashSet<int>();
 
    // Iterate over all the digits of K
    while (K != 0)
    {
         
        // Insert current digit into set
        set.Add(K % 10);
 
        // Update K
        K = K / 10;
    }
 
    // Stores the count of array elements
    // whose distinct digits are a subset
    // of the digits of K
    int count = 0;
 
    // Traverse the array, []arr
    for(int i = 0; i < arr.Length; i++)
    {
         
        // Stores current element
        int no = arr[i];
 
        // Check if all the digits of arr[i]
        // are present in K or not
        bool flag = true;
 
        // Iterate over all the digits of arr[i]
        while (no != 0)
        {
             
            // Stores current digit
            int digit = no % 10;
 
            // If digit not present in the set
            if (!set.Contains(digit))
            {
                 
                // Update flag
                flag = false;
                break;
            }
 
            // Update no
            no = no / 10;
        }
 
        // If all the digits of
        // arr[i] present in set
        if (flag == true)
        {
             
            // Update count
            count++;
        }
    }
    return count;
}
 
// Driver Code
public static void Main(String[] args)
{
    int K = 12;
    int []arr = { 1, 12, 1222, 13, 2 };
     
    Console.WriteLine(noOfValidKbers(K, arr));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript program to implement
// the above approach
    // Function to the count of array elements whose
    // distinct digits are a subset of the digits of K
    function noOfValidKbers(K , arr) {
 
        // Stores distinct digits of K
        var set = new Set();
 
        // Iterate over all the digits of K
        while (K != 0) {
 
            // Insert current digit into set
            set.add(K % 10);
 
            // Update K
            K = parseInt(K / 10);
        }
 
        // Stores the count of array elements
        // whose distinct digits are a subset
        // of the digits of K
        var count = 0;
 
        // Traverse the array, arr
        for (i = 0; i < arr.length; i++) {
 
            // Stores current element
            var no = arr[i];
 
            // Check if all the digits of arr[i]
            // are present in K or not
            var flag = true;
 
            // Iterate over all the digits of arr[i]
            while (no != 0) {
 
                // Stores current digit
                var digit = no % 10;
 
                // If digit not present in the set
                if (!set.has(digit)) {
 
                    // Update flag
                    flag = false;
                    break;
                }
 
                // Update no
                no = parseInt(no / 10);
            }
 
            // If all the digits of
            // arr[i] present in set
            if (flag == true) {
 
                // Update count
                count++;
            }
        }
        return count;
    }
 
    // Driver Code
     
        var K = 12;
        var arr = [ 1, 12, 1222, 13, 2 ];
        document.write(noOfValidKbers(K, arr));
 
// This code contributed by umadevi9616
 
</script>


Output: 

4

 

Time Complexity: O(N * log10(Max)), where Max is the largest array element 
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
09 Jan, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments