Sunday, January 12, 2025
Google search engine
HomeData Modelling & AICount of ways to select prime or non-prime number based on Array...

Count of ways to select prime or non-prime number based on Array index

Given an array A[] of size N. An array has to be created using the given array considering the following conditions.

  • If the index is prime, you must choose a non-prime number that is less than or equal to A[i].
  • If the index is non-prime, you must choose a prime number that it less than or equal to A[i].

The task is to count the total number of ways such numbers can be selected.

Note: The indexing of the given array should be considered 1-based indexing.

Examples:

Input: N = 5  A = {2, 3, 4, 8, 5}
Output:  16
Explanation:  You can choose 1 number for index 1 i.e., 2 
(As index 1 is not prime and prime number count less than 
or equal to 2 is one i.e. 2), 1 number for index 2,  
2 numbers for index 3, 4 numbers for index 4 
and 2 numbers for index 5. 
Hence total number of ways = 1x1x2x4x2 = 16.

Input: N = 2  A = {5, 6}
Output:  9
Explanation:  You can choose 3 number for index 1,  
3 numbers for index 2. Hence total number of ways = 3×3 = 9 .

Approach: The idea to solve the problem is as follows:

  • Counting and store the value of all non-prime and prime in an array till the maximum element of the array. 
  • Then iterate the given array and then if index i is non-prime we multiply the prime count till A[i] and perform the similar operation for prime index.

Follow the below illustration for a better understanding

Illustration: 

Consider an example N = 5 and A[] = {2, 3, 4, 8, 5}

As index 1 is Non Prime So Prime number count less than or equal to 2 is 1 (i.e 2) 
As index 2 is Prime So Non Prime number count less than or equal to 3 is 1 (i.e 1)
As index 3 is Prime So Non Prime number count less than or equal to 4 is 2 (i.e 1, 4)
As index 4 is Non Prime So Prime number count less than or equal to 8 is 4 (i.e 2, 3, 5, 7)
As index 5 is Prime So Non Prime number count less than or equal to 5 is 2 (i.e 1, 4)

Total Number of ways = 1 x 1 x 2 x 4 x 2 = 16 

Hence Total number of ways to select number from array is 16.      

Follow the steps mentioned below to implement the idea

  • Find the maximum number from the given array.
  • Iterate from 1 to the maximum value and find the count of primes and non-primes till every value and store them in a vector of pairs.
  • Iterate over the array:
    • Check if the current index is prime or nonprime. if the current index is prime then select the non-prime value count from the vector of the pair.
    • Multiply the answer with the non-prime count and store these values in the answer again.
    • If the current index is non-prime then select prime value count from the vector of pair and multiply with the answer and store these values in answer again.
  • Return the answer.

Below is the implementation of the above approach: 

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to check whether the number
// is prime or not
bool isPrime(int a)
{
    if (a == 1)
        return false;
    if (a == 2)
        return true;
    for (int i = 2; i <= sqrt(a); i++) {
        if (a % i == 0)
            return false;
    }
    return true;
}
 
// Function to count prime and non prime number
// and push count in vector
void count_prime_and_NonPrime(int n,
                              vector<pair<int, int> >& v)
{
    int p = 0, np = 0;
    v.push_back(make_pair(p, np));
    for (int i = 1; i <= n; i++) {
        if (isPrime(i))
            p++;
        else
            np++;
        v.push_back(make_pair(p, np));
    }
}
 
// Function to find number of ways
int NoOfWays(int n, int a[])
{
    vector<pair<int, int> > v;
    int mx = 0;
    for (int i = 0; i < n; i++) {
        mx = max(mx, a[i]);
    }
    count_prime_and_NonPrime(mx, v);
    int ans = 1;
    for (int j = 0; j < n; j++) {
        int prime = v[a[j]].first;
        int nonPrime = v[a[j]].second;
        if (isPrime(j + 1)) {
            ans *= nonPrime;
        }
        else {
            ans *= prime;
        }
    }
    return ans;
}
 
// Driver code
int main()
{
    int N = 5;
    int A[] = { 2, 3, 4, 8, 5 };
 
    // Function call
    cout << NoOfWays(N, A) << endl;
    return 0;
}


Java




// Java program for the above approach
 
import java.io.*;
import java.util.*;
 
class GFG {
 
    static class pair {
        int first, second;
        public pair(int first, int second)
        {
            this.first = first;
            this.second = second;
        }
    }
 
    // Function to check whether the number is prime or not
    static boolean isPrime(int a)
    {
        if (a == 1) {
            return false;
        }
        if (a == 2) {
            return true;
        }
        for (int i = 2; i <= Math.sqrt(a); i++) {
            if (a % i == 0) {
                return false;
            }
        }
        return true;
    }
 
    // Function to count prime and non prime number and push
    // count in arraylist.
    static List<pair> count_prime_and_NonPrime(int n,
                                               List<pair> v)
    {
        int p = 0, np = 0;
        v.add(new pair(p, np));
        for (int i = 1; i <= n; i++) {
            if (isPrime(i)) {
                p++;
            }
            else {
                np++;
            }
            v.add(new pair(p, np));
        }
        return v;
    }
 
    // Function to find number of ways
    static int NoOfWays(int n, int[] a)
    {
        List<pair> v = new ArrayList<pair>();
        int mx = 0;
        for (int i = 0; i < n; i++) {
            mx = Math.max(mx, a[i]);
        }
        v = count_prime_and_NonPrime(mx, v);
        int ans = 1;
        for (int j = 0; j < n; j++) {
            int prime = v.get(a[j]).first;
            int nonPrime = v.get(a[j]).second;
            if (isPrime(j + 1)) {
                ans *= nonPrime;
            }
            else {
                ans *= prime;
            }
        }
        return ans;
    }
 
    public static void main(String[] args)
    {
        int N = 5;
        int[] A = { 2, 3, 4, 8, 5 };
 
        // Function call
        System.out.println(NoOfWays(N, A));
    }
}
 
// This code is contributed by lokeshmvs21.


Python3




# Function to check whether the number is prime or not
def isPrime(a):
    if (a == 1):
        return False
    if (a == 2):
        return True
    for i in range(2, int(a**0.5)+1):
        if (a % i == 0):
            return False
    return True
 
# Function to count prime and non prime number and push
# count in arraylist.
def count_prime_and_NonPrime(n, v):
    p = 0
    np = 0
    v = []
    v.append((p, np))
    for i in range(1, n+1):
        if (isPrime(i)):
            p += 1
        else:
            np += 1
        v.append((p, np))
    return v
 
# Function to find number of ways
def NoOfWays(n, a):
    v = []
    mx = 0
    for i in range(n):
        mx = max(mx, a[i])
    v = count_prime_and_NonPrime(mx, v)
    ans = 1
    for j in range(n):
        prime = v[a[j]][0]
        nonPrime = v[a[j]][1]
        if (isPrime(j + 1)):
            ans *= nonPrime
        else:
            ans *= prime
    return ans
 
 
if __name__ == '__main__':
    A = [2, 3, 4, 8, 5]
    N = len(A)
    # Function call
    print(NoOfWays(N, A))
 
    # This code is contributed by vikkycirus.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
public class GFG{
 
  class pair {
    public int first, second;
    public pair(int first, int second)
    {
      this.first = first;
      this.second = second;
    }
  }
 
  // Function to check whether the number is prime or not
  static bool isPrime(int a)
  {
    if (a == 1) {
      return false;
    }
    if (a == 2) {
      return true;
    }
    for (int i = 2; i <= Math.Sqrt(a); i++) {
      if (a % i == 0) {
        return false;
      }
    }
    return true;
  }
 
  // Function to count prime and non prime number and push
  // count in arraylist.
  static List<pair> count_prime_and_NonPrime(int n,
                                             List<pair> v)
  {
    int p = 0, np = 0;
    v.Add(new pair(p, np));
    for (int i = 1; i <= n; i++) {
      if (isPrime(i)) {
        p++;
      }
      else {
        np++;
      }
      v.Add(new pair(p, np));
    }
    return v;
  }
 
  // Function to find number of ways
  static int NoOfWays(int n, int[] a)
  {
    List<pair> v = new List<pair>();
    int mx = 0;
    for (int i = 0; i < n; i++) {
      mx = Math.Max(mx, a[i]);
    }
    v = count_prime_and_NonPrime(mx, v);
    int ans = 1;
    for (int j = 0; j < n; j++) {
      int prime = v[a[j]].first;
      int nonPrime = v[a[j]].second;
      if (isPrime(j + 1)) {
        ans *= nonPrime;
      }
      else {
        ans *= prime;
      }
    }
    return ans;
  }
 
  static public void Main ()
  {
    int N = 5;
    int[] A = { 2, 3, 4, 8, 5 };
 
    // Function call
    Console.Write(NoOfWays(N, A));
  }
}
 
// This code is contributed by hrithikgarg03188.


Javascript




// Javascript program for the above approach
 
class pair {
    constructor(first, second) {
        this.first = first;
        this.second = second;
    }
}
 
// Function to check whether the number is prime or not
function isPrime(a) {
    if (a == 1) {
        return false;
    }
    if (a == 2) {
        return true;
    }
    for (let i = 2; i <= Math.floor(Math.sqrt(a)); i++) {
        if (a % i == 0) {
            return false;
        }
    }
    return true;
}
 
// Function to count prime and non prime number and push
// count in arraylist.
function count_prime_and_NonPrime(n, v) {
    let p = 0, np = 0;
    v.push(new pair(p, np));
    for (let i = 1; i <= n; i++) {
        if (isPrime(i)) {
            p++;
        }
        else {
            np++;
        }
        v.push(new pair(p, np));
    }
    return v;
}
 
// Function to find number of ways
function NoOfWays(n, a) {
    let v = [];
    let mx = 0;
    for (let i = 0; i < n; i++) {
        mx = Math.max(mx, a[i]);
    }
    v = count_prime_and_NonPrime(mx, v);
    let ans = 1;
    for (let j = 0; j < n; j++) {
        let prime = v[a[j]].first;
        let nonPrime = v[a[j]].second;
        if (isPrime(j + 1)) {
            ans *= nonPrime;
        }
        else {
            ans *= prime;
        }
    }
    return ans;
}
 
let N = 5;
let A = [2, 3, 4, 8, 5];
 
// Function call
console.log(NoOfWays(N, A));
 
// This code is contributed by Saurabh.


Output

16

Time Complexity: O(N * sqrt(M)) where M is the largest element of array
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
25 Nov, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments